WEAK AND STRONG FORMS OF γ-IRRESOLUTENESS

ABSTRACT. In this paper we consider new weak and strong forms of γ-irresoluteness and γ-closure via the concept of $g\gamma$-closed sets which we call ap-γ-irresolute, ap-γ-closed and contra-γ-irresolute maps. Moreover, we use ap-γ-irresolute and ap-γ-closed maps to obtain a characterization of $\gamma-T_{1\frac{1}{2}}$-spaces.

KEY WORDS: topological spaces, generalized γ-closed sets, γ-open sets, γ-closed maps, γ-irresolute maps.

(2000) AMS Mathematics Subject Classification : 54B05, 54C08.

1. Introduction and preliminaries

A.A. El-Atik [6] introduced the notion of γ-open sets and γ-continuity in topological spaces. Andrijevic [1] defined and investigated b-open sets which are equivalent with γ-open sets. El-Atik [6] introduced a new map called γ-irresolute which is contained in the class of γ-continuous maps. In this paper, we introduce weak and strong forms of γ-irresoluteness called ap-γ-irresoluteness and ap-γ-closedness by using $g\gamma$-closed sets and obtain some basic properties of such maps. This definition enables us to obtain conditions under which maps and inverse maps preserve $g\gamma$-closed sets. Also, in this paper we present a new generalization of contra γ-continuity due to the present Author and EL-Maghrabi [14, 7] called contra-γ-irresoluteness. We define this last class of maps by the requirement that the inverse of each γ-open set in the codomain is γ-closed in the domain. This notion is a stronger form of ap-γ-irresoluteness. Finally, we characterize the class of $\gamma-T_{1\frac{1}{2}}$ spaces in terms of ap-γ-irresolute and ap-γ-closed maps.

Throughout the present paper, (X, τ) and (Y, σ) (or X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of (X, τ). The subset A of a topological space (X, τ) is called γ-open [6] or b-open [1] or sp-open [5] (resp. α-open [15], semi-open [10]) if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$ (resp. $A \subseteq Int(Cl(Int(A)))$, $A \subseteq Cl(Int(A)))$, where $Cl(A)$ and $Int(A)$ denote the closure and the interior of A respectively. The complement of a γ-open (resp. α-open, semi-open) set is called γ-closed (resp. α-closed, semi-closed). The intersection
of all γ-closed (resp. α-closed, semi-closed) sets containing A is called the γ-closure (res. α-closure, semi-closure) of A and is denoted by $\gamma Cl(A)$ resp. $\alpha Cl(A), sCl((A))$. The interior of A is the union of all γ-open sets in X and is denoted by $\gamma Int(A)$. The family of all γ-open (resp. γ-closed, α-open, semi-open) sets in X (resp. $\gamma C(X, \tau), \alpha O(X, \tau), SO(X, \tau)$) is denoted by $\gamma O(X, \tau)$. A subset A of (X, τ) is said to be:

(i) generalized closed (briefly, g-closed) [11] set if $\gamma O(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ),

(ii) generalized α-closed (briefly, $g\alpha$-closed) [12] set if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in (X, τ),

(iii) generalized semi-closed (briefly, gs-closed) [2] set if $\gamma cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ),

(iv) semi-generalized closed (briefly, sg-closed) [3] set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ),

(v) generalized γ-closed (briefly, $g\gamma$-closed) [8] (equivalently, gb-closed) [9] set if $\gamma cl(A) \subseteq U$ whenever $A \subseteq U$ and U is γ-open in (X, τ).

It should be noted that this notion is a particular case of the notion of generalized (m_1, m_2)-closed sets introduced by Noiri [16]. A subset B is said to be generalized γ-open (briefly, $g\gamma$-open) in (X, τ) [8] if its complement $B^c = X - B$ is $g\gamma$-closed in (X, τ).

A map $f : (X, \tau) \to (Y, \sigma)$ is called:

(i) γ-irresolute [6] if for each $V \in \gamma O(Y, \sigma), f^{-1}(V) \in \gamma O(X, \tau)$.

(ii) pre-γ-closed [6] (resp. pre-γ-open [6]), if for every γ-closed (resp. γ-open) set A of (X, τ), $f(A)$ is γ-closed (resp. γ-open) in (Y, σ).

(iii) contra-γ-closed [7] if, $f(U)$ is γ-open in Y, for each closed set U of X.

2. Ap-γ-irresolute, ap-γ-closed and contra-γ-irresolute maps

Definition 1. A map $f : (X, \tau) \to (Y, \sigma)$ is said to be approximately γ-irresolute (briefly, ap-γ-irresolute) if $\gamma Cl(A) \subseteq f^{-1}(G)$ whenever G is a γ-open subset of (Y, σ), A is a $g\gamma$-closed subset of (X, τ) and $A \subseteq f^{-1}(G)$.

Definition 2. A map $f : (X, \tau) \to (Y, \sigma)$ is said to be approximately γ-closed (briefly, ap-γ-closed) if, $f(A) \subseteq \gamma Int(H)$ whenever H is a $g\gamma$-open subset of (Y, σ), A is a γ-closed subset of (X, τ) and $f(A) \subseteq H$.

Theorem 1. (i) $f : (X, \tau) \to (Y, \sigma)$ is ap-γ-irresolute if $f^{-1}(G)$ is γ-closed in (X, τ), for every $G \in \gamma O(Y, \sigma)$.

(ii) $f : (X, \tau) \to (Y, \sigma)$ is ap-γ-closed if, $f(A) \in \gamma O(Y, \sigma)$, for every γ-closed subset A of (X, τ).
Proof. (i) Let $A \subseteq f^{-1}(G)$, where $G \in \gamma\mathcal{O}(Y, \sigma)$ and A is a $g\gamma$-closed subset of (X, τ). Therefore $\gamma\text{Cl}(A) \subseteq \gamma\text{Cl}(f^{-1}(G)) = f^{-1}(G)$. Thus f is ap-γ-irresolute.

(ii) Let $f(A) \subseteq H$, where A is a γ-closed subset of (X, τ) and H is a $g\gamma$-open subset of (Y, σ). Therefore $\gamma\text{Int}(f(A)) \subseteq \gamma\text{Int}(H)$. Then $f(A) \subseteq \gamma\text{Int}(H)$. Thus f is ap-γ-closed. ■

Clearly, γ-irresolute maps are ap-γ-irresolute. Also, pre-γ-closed maps are ap-γ-closed. The converse implications do not hold as it is shown in the following example.

Example 1. Let $X = \{a, b\}$ be the Sierpinski space with the topology $\tau = \{X, \phi, \{a\}\}$. Let $f : (X, \tau) \to (X, \tau)$ be defined by $f(a) = b$ and $f(b) = a$. Since the image of every γ-closed set is γ-open, then f is ap-γ-closed (similarly, since the inverse image of every γ-open set is γ-closed, then f ap-γ-irresolute). However $\{b\}$ is γ-closed in (X, τ) (resp. $\{a\}$ is γ-open), but $f(\{b\})$ is not γ-closed (resp. $f^{-1}(\{a\})$ is not γ-open) in (X, τ). Therefore f is not pre-γ-closed (resp. f is not γ-irresolute).

Remark 1. Let be (X, τ) a space as defined in Example 1. Then the identity map on (X, τ) is both ap-γ-irresolute and ap-γ-closed. It is clear that the converses of (i) and (ii) in Theorem 1 do not hold.

In the following result, the converses of (i) and (ii) in Theorem 1 are true under certain conditions.

Theorem 2. Let $f : (X, \tau) \to (Y, \sigma)$ be a map from a space (X, τ) to a space (Y, σ).

(i) Let all subsets of (X, τ) be clopen, then f is ap-γ-irresolute if and only if $f^{-1}(G)$ is γ-closed in (X, τ), for every $G \in \gamma\mathcal{O}(Y, \sigma)$,

(ii) Let all subsets of (Y, σ) be clopen, then f is ap-γ-closed if and only if $f(A) \in \gamma\mathcal{O}(Y, \sigma)$, for every γ-closed subset A of (X, τ).

Proof. (i) The sufficiency is stated in Theorem 1.

Necessity. Assume that f is ap-γ-irresolute. Let A be an arbitrary subset of (X, τ) such that $A \subseteq H$, where $H \in \gamma\mathcal{O}(X, \tau)$. Then by hypothesis $\gamma\text{Cl}(A) \subseteq \gamma\text{Cl}(H) = H$. Therefore all subsets of (X, τ) are $g\gamma$-closed (hence and all are $g\gamma$-open). So, for any $G \in \gamma\mathcal{O}(Y, \sigma)$, $f^{-1}(G)$ is γ-closed in (X, τ). Since f is ap-γ-irresolute, $\gamma\text{Cl}(f^{-1}(G)) \subseteq f^{-1}(G)$. Therefore $\gamma\text{Cl}(f^{-1}(G)) = f^{-1}(G)$, i.e., $f^{-1}(G)$ is γ-closed in (X, τ).

(ii) The sufficiency is clear by Theorem 1.

Necessity. Assume that f is ap-γ-closed. As in (i), we obtain that all subsets of (Y, σ) are $g\gamma$-open. Therefore for any γ-closed subset A of (X, τ), $f(A)$ is $g\gamma$-open in Y. Since f is ap-γ-closed $f(A) \subseteq \gamma\text{Int}(f(A))$. Hence $f(A) = \gamma\text{Int}(f(A))$, i.e., $f(A)$ is γ-open. ■
As an immediate consequence of Theorem 2, we have the following.

Corollary 1. Let \(f : (X, \tau) \to (Y, \sigma) \) be a map from a topological space \((X, \tau)\) to a topological space \((Y, \sigma)\).

(i) Let all subsets of \((X, \tau)\) be clopen, then \(f \) is ap-\(\gamma\)-irresolute if and only if, \(f \) is \(\gamma\)-irresolute,

(ii) Let all subsets of \((Y, \sigma)\) be clopen, then \(f \) is ap-\(\gamma\)-closed if and only if, \(f \) is pre \(\gamma\)-closed.

Definition 3. A map \(f : (X, \tau) \to (Y, \sigma) \) is called:

(i) contra-\(\gamma\)-irresolute if \(f^{-1}(G) \) is \(\gamma\)-closed in \((X, \tau)\) for each \(G \in \gamma O(Y, \sigma) \),

(ii) contra-pre-\(\gamma\)-closed if \(f(A) \in \gamma O(Y, \sigma) \), for each \(\gamma\)-closed set \(A \) of \((X, \tau)\).

Remark 2. In fact, contra-\(\gamma\)-irresoluteness and \(\gamma\)-irresoluteness are independent notions. Example 1 shows that contra-\(\gamma\)-irresoluteness does not imply \(\gamma\)-irresoluteness while the converse is shown in the following example.

Example 2. A \(\gamma\)-irresolute map need not be contra-\(\gamma\)-irresolute. The identity map on the topological space \((X, \tau)\), where \(\tau = \{X, \phi, \{a\}, \{a, b\}\} \) and \(X = \{a, b, c\} \) is an example of a \(\gamma\)-irresolute map which is not contra-\(\gamma\)-irresolute.

Recall that a map \(f : (X, \tau) \to (Y, \sigma) \) is contra-\(\gamma\)-continuous [7, 14] if, \(f^{-1}(G) \) is \(\gamma\)-closed in \((X, \tau)\), for each open set \(G \) of \((Y, \sigma)\).

Every contra-\(\gamma\)-irresolute map is contra-\(\gamma\)-continuous, but not conversely as the following example shows.

Example 3. Let \(X = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}, \{a, b\}\} \) and \(Y = \{p, q\} \), \(\sigma = \{Y, \phi, \{p\}\} \). Let \(f : (X, \tau) \to (Y, \sigma) \) be defined by \(f(a) = p \) and \(f(b) = f(c) = q \). Then \(f \) is contra-\(\gamma\)-continuous, but \(f \) is not contra-\(\gamma\)-irresolute.

The following result can be easily verified. Therefore we omitted its proof.

Theorem 3. Let \(f : (X, \tau) \to (Y, \sigma) \) be a map. Then the following conditions are equivalent:

(i) \(f \) is contra-\(\gamma\)-irresolute,

(ii) The inverse image of each \(\gamma\)-closed set of \(Y \) is \(\gamma\)-open in \(X \).

Remark 3. By Theorem 1, we have that every contra-\(\gamma\)-irresolute map is ap-\(\gamma\)-irresolute and every contra-\(\gamma\)-closed map is ap-\(\gamma\)-closed, the converse implications do not hold (see Remark 1).

A map \(f : (X, \tau) \to (Y, \sigma) \) is called perfectly contra-\(\gamma\)-irresolute if the inverse of every \(\gamma\)-open set of \(Y \) is \(\gamma\)-clopen in \(X \).

Lemma 1. Every perfectly contra-\(\gamma\)-irresolute map is contra-\(\gamma\)-irresolute and \(\gamma\)-irresolute. But the converse may not be true.
Example 4. Remark 2 is an example of a contra-γ-irresolute map which is not perfectly contra-γ-irresolute and Example 3 is an example of a γ-irresolute map which is not perfectly contra-γ-irresolute.

Remark 4. For the definitions of ap-irresolute (resp. ap-α-irresolute), contra-irresolute (resp. contra-α-irresolute), perfectly contra-irresolute (resp. perfectly contra-α-irresolute) and irresolute (resp. α-irresolute) see [3, 4, 13].

Example 5. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$, $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$ and $\tau_3 = \{\phi, X\}$. Then,

$SO(X, \tau) = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}\} = \gamma O(X, \tau),$

$\alpha O(X, \tau) = \{\phi, X, \{a\}, \{a, b\}\},$

$SO(X, \tau_1) = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\} = \alpha O(X, \tau_1) = \gamma O(X, \tau_1),$

$SO(X, \tau_2) = \{\phi, X, \{c\}, \{a, b\}\} = \alpha O(X, \tau_2),$

$\gamma O(X, \tau_2) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}. Then,

(a) Let $f: (X, \tau) \to (X, \tau_2)$ be defined as $f(a) = a$, $f(b) = c$ and $f(c) = b$. Then:

(i) f is contra-irresolute (hence, ap-irresolute), but f is not contra-α-irresolute (hence f is not perfectly contra-α-irresolute);

(ii) f is irresolute but f is not γ-irresolute;

(iii) f is irresolute but f is not α-irresolute.

(b) Let $f: (X, \tau_3) \to (X, \tau)$ be the identity map. Then:

(i) f is γ-irresolute but f is not irresolute;

(ii) f is γ-irresolute but f is not α-irresolute.

(c) Let $f: (X, \tau_2) \to (X, \tau_1)$ be the identity map. Then:

(i) f is contra-γ-irresolute but f is not contra-irresolute;

(ii) f is contra-γ-irresolute but f is not contra-α-irresolute;

(d) Let $f: (X, \tau_2) \to (X, \tau_2)$ be the identity map. Then:

(i) f is perfectly contra-γ-irresolute but f is not perfectly contra-irresolute;

(ii) f is perfectly contra-γ-irresolute but f is not perfectly contra-α-irresolute.

Example 6. EL-Atik [6] For any countable set X, the identity maps from an indiscrete space into any other one is γ-irresolute but it is not irresolute.

Example 7. EL-Atik [6] The identity function from a particular point topological space on any countable set with any particular point into an indiscrete one is irresolute but not γ-irresolute.

Clearly, the following diagram holds and none of its implications are reversible:
The following theorem is a decomposition of perfectly contra-γ-irresoluteness.

Theorem 4. For a function \(f : (X, \tau) \to (Y, \sigma)\), the following conditions are equivalent:

(i) \(f\) is perfectly contra-γ-irresolute,
(ii) \(f\) is contra-γ-irresolute and γ-irresolute.

Theorem 5. If a map \(f : (X, \tau) \to (Y, \sigma)\) is γ-irresolute and ap-γ-closed, then \(f^{-1}(A)\) is \(g\gamma\)-closed (resp. \(g\gamma\)-open) whenever \(A\) is a \(g\gamma\)-closed (resp. \(g\gamma\)-open) subset of \((Y, \sigma)\).

Proof. Let \(A\) be a \(g\gamma\)-closed subset of \((Y, \sigma)\). Suppose that \(f^{-1}(A) \subseteq G\) where \(G \in \gamma O(X, \tau)\). Taking complements, we obtain \(G^c \subseteq f^{-1}(A^c)\) or \(f(G^c) \subseteq A^c\). Since \(f\) is ap-γ-closed, then \(f(G^c) \subseteq \gamma Int(A^c) = (\gamma Cl(A))^c\). It follows that \(G^c \subseteq (f^{-1}(\gamma Cl(A)))^c\) and hence \(f^{-1}(\gamma Cl(A)) \subseteq G\). Since \(f\) is γ-irresolute, \(f^{-1}(\gamma Cl(A))\) is γ-closed. Thus we have

\[
\gamma Cl(f^{-1}(A)) \subseteq \gamma Cl(f^{-1}(\gamma Cl(A))) = f^{-1}(\gamma Cl(A)) \subseteq G.
\]

This implies that \(f^{-1}(A)\) is \(g\gamma\)-closed in \((X, \tau)\).

A similar argument shows that inverse images of \(g\gamma\)-open sets are \(g\gamma\)-open.
Theorem 6. If a map \(f : (X, \tau) \to (Y, \sigma) \) is \(\alpha\gamma\)-irresolute and \(\alpha\gamma \)-closed, then for every \(g\gamma \)-closed subset \(V \) of \((X, \tau)\) \(f(V) \) is a \(g\gamma \)-closed set of \((Y, \sigma)\).

Proof. Let \(V \) be a \(g\gamma \)-closed subset of \((X, \tau)\). Let \(f(V) \subseteq G \) where \(G \in \gamma O(Y, \sigma) \). Then \(V \subseteq f^{-1}(G) \) holds. Since \(f \) is \(\alpha\gamma \)-irresolute, \(\gamma Cl(V) \subseteq (f^{-1}(G)) \) and hence \(f(\gamma Cl(V)) \subseteq G \). Therefore, we have \(\gamma Cl(f(V)) \subseteq \gamma Cl((\gamma Cl(V)) = f(\gamma Cl(V)) \subseteq G \). Hence \(f(V) \) is \(g\gamma \)-closed in \((Y, \sigma)\).

It should be noticed that the composition of two \(\alpha\gamma \)-irresolute maps need not be \(\alpha\gamma \)-irresolute. Let \(X = \{a, b\} \) be the Sierpinski space and set \(\tau = \{\phi, X, \{a\}\} \) and \(\sigma = \{\phi, X, \{b\}\} \). The identity maps \(f : (X, \tau) \to (X, \sigma) \) and \(g : (X, \sigma) \to (X, \tau) \) are both \(\alpha\gamma \)-irresolute but their composition \(g \circ f : (X, \tau) \to (X, \tau) \) is not \(\alpha\gamma \)-irresolute.

However the following theorem holds, the proof is easy and hence omitted.

Theorem 7. Let \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \eta) \) be two maps such that \(g \circ f : (X, \tau) \to (Z, \eta) \). Then:

(i) \(g \circ f \) is \(\alpha\gamma \)-irresolute, if \(g \) is \(\gamma \)-irresolute and \(f \) is \(\alpha\gamma \)-irresolute;

(ii) \(g \circ f \) is \(\alpha\gamma \)-irresolute, if \(g \) is \(\alpha\gamma \)-irresolute and \(f \) is \(\gamma \)-irresolute.

In analogous way, we have the following.

Theorem 8. Let \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \eta) \) be two maps such that \(g \circ f : (X, \tau) \to (Z, \eta) \). Then:

(i) \(g \circ f \) is \(\alpha\gamma \)-closed, if \(g \) is \(\alpha\gamma \)-closed and \(f \) is \(\alpha\gamma \)-closed;

(ii) \(g \circ f \) is \(\alpha\gamma \)-closed, if \(g \) is \(\gamma \)-open, \(f \) is \(\alpha\gamma \)-closed and \(g^{-1} \) preserves \(\gamma \)-open sets;

(iii) \(g \circ f \) is \(\alpha\gamma \)-irresolute, if \(g \) is \(\gamma \)-irresolute and \(f \) is \(\alpha\gamma \)-irresolute.

Proof. (i) Suppose that \(A \) is an arbitrary \(\gamma \)-closed subset of \((X, \tau)\) and \(B \) is a \(\gamma \)-open subset of \((Z, \eta)\) for which \((g \circ f)(A) \subseteq B \). Then \(f(A) \) is \(\gamma \)-closed in \((Y, \sigma)\), because \(f \) is \(\alpha\gamma \)-closed. Since \(g \) is \(\alpha\gamma \)-closed, \(g(f(A)) \subseteq \gamma - Int(B) \). This implies that \(g \circ f \) is \(\alpha\gamma \)-closed.

(ii) Suppose that \(A \) is an arbitrary \(\gamma \)-closed subset of \((X, \tau)\) and \(B \) is a \(\gamma \)-open subset of \((Z, \eta)\) for which \((g \circ f)(A) \subseteq B \). Hence \(f(A) \subseteq g^{-1}(B) \). Because, \(g^{-1}(B) \) is \(\gamma \)-open and \(f \) is \(\alpha\gamma \)-closed. Thus \((g \circ f)(A) = g(f(A)) \subseteq g(\gamma - Int(g^{-1}(B)) \subseteq \gamma Int(gg^{-1}(B)) \subseteq \gamma Int(B) \). This implies that \(g \circ f \) is \(\alpha\gamma \)-closed.

(iii) Suppose that \(A \) is an arbitrary \(\gamma \)-closed subset of \((X, \tau)\) and \(G \in \gamma O(Z, \eta) \) for which \(A \subseteq (g \circ f)^{-1}(G) \). Then \(g^{-1}(G) \in \gamma O(Y, \sigma) \) because \(g \) is \(\gamma \)-irresolute. Since \(f \) is \(\alpha\gamma \)-irresolute, \(\gamma Cl(A) \subseteq f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G) \). This proves that \(g \circ f \) is \(\alpha\gamma \)-irresolute.

\[\blacksquare \]
As a consequence of Theorem 8, we have.

Corollary 2. Let \(f_\alpha : X \to Y_\alpha \) be a map for each \(\alpha \in \Omega \) and let \(f : X \to \Pi Y_\alpha \) be the product map given by \(f(x) = (f_\alpha(x)) \). If, \(f \) is ap-\(\gamma \)-irresolute, then \(f_\alpha \) is ap-\(\gamma \)-irresolute for each \(\alpha \).

Proof. For each \(\gamma \), let \(P_\gamma : \Pi Y_\alpha \to Y_\gamma \) be the projection map. Then \(f_\gamma = P_\gamma \circ f \), where \(P_\gamma \) is \(\gamma \)-irresolute. By Theorem 8(iii) \(f_\gamma \) is ap-\(\gamma \)-irresolute. \(\blacksquare \)

Lemma 2. Let \(A \) and \(Y \) be subsets of a space \(X \). If \(A \in \gamma O(Y, \tau_Y) \) and \(Y \in \gamma O(X, \tau) \), then \(A \in \gamma O(X, \tau) \).

Lemma 3. Let \(X \) be a topological space and \(A, Y \) be subsets of \(X \) such that \(A \subseteq Y \subseteq X \) and \(Y \in \gamma O(X, \tau) \). Then \(\gamma Cl(A) \cap Y = \gamma Cl_Y(A) \), where \(\gamma Cl_Y(A) \) denotes the \(\gamma \)-closure of \(A \) in the subspace \(Y \).

Regarding the restriction \(f_A \) of a map \(f : (X, \tau) \to (Y, \sigma) \) to a subset \(A \) of \(X \), we have the following.

Theorem 9. (i) If \(f : (X, \tau) \to (Y, \sigma) \) is ap-\(\gamma \)-closed and \(A \) is a \(\gamma \)-closed set of \((X, \tau) \), then its restriction \(f_A : (A, \tau_A) \to (Y, \sigma) \) is ap-\(\gamma \)-closed;

(ii) If, \(f : (X, \tau) \to (Y, \sigma) \) is ap-\(\gamma \)-irresolute and \(A \) is an open, \(g\gamma \)-closed subset of \((X, \tau) \), then its restriction \(f_A : (A, \tau_A) \to (Y, \sigma) \) is ap-\(\gamma \)-irresolute.

Proof. (i) Suppose that \(B \) is arbitrary \(\gamma \)-closed subset of \((A, \tau_A) \) and \(G \) is a \(g\gamma \)-open subset of \((Y, \sigma) \) for which \(f_A(B) \subseteq G \). By Lemma 2, \(B \) is \(\gamma \)-closed subset of \((X, \tau) \). Since \(A \) is a \(\gamma \)-closed subset of \((X, \tau) \), then \(f_A(B) = f(B) \subseteq G \). Using Definition 2, we have \(f_A(B) \subseteq \gamma Int(G) \). Thus \(f_A \) is an ap-\(\gamma \)-closed map.

(ii) Assume that \(V \) is a \(g\gamma \)-closed subset relative to \(A \), i.e., \(V \) is \(g\gamma \)-closed in \((A, \tau_A) \) and \(G \) is a \(\gamma \)-open subset of \((Y, \sigma) \) for which \(V \subseteq (f_A)^{-1}(G) \). Then \(V \subseteq f^{-1}(G) \cap A \).

On the other hand, \(V \) is \(g\gamma \)-closed in \(X \). Since \(f \) is ap-\(\gamma \)-irresolute, then \(\gamma Cl(V) \subseteq f^{-1}(G) \). This implies that \(\gamma Cl(V) \cap A \subseteq f^{-1}(G) \cap A \). Using the fact that \(\gamma Cl(V) \cap A = \gamma Cl_A(V) \) (Lemma 3), we have \(\gamma Cl_A(V) \subseteq (f_A)^{-1}(G) \). Thus \(f_A : (A, \tau_A) \to (Y, \sigma) \) is ap-\(\gamma \)-irresolute. \(\blacksquare \)

3. Characterizations of \(\gamma-T_{\frac{1}{2}} \)-spaces

In the following result, we offer a characterization of the class of \(\gamma-T_{\frac{1}{2}} \)-spaces by using the concepts of ap-\(\gamma \)-irresolute and ap-\(\gamma \)-closed maps.

Definition 4. A space \((X, \tau)\) is said to be \(\gamma-T_{\frac{1}{2}} \)-space, if every \(g\gamma \)-closed set is \(\gamma \)-closed.
Theorem 10. Let \((X, \tau)\) be a space. Then the following statements are equivalent.

(i) \((X, \tau)\) is a \(\gamma - T_{\frac{1}{2}}\)-space;

(ii) \(f\) is ap-\(\gamma\)-irresolute, for every space \((Y, \sigma)\) and every map \(f : (X, \tau) \to (Y, \sigma)\).

Proof. (i) \(\to\) (ii). Let \(V\) be a \(g\gamma\)-closed subset of \((X, \tau)\) and \(V \subseteq f^{-1}(G)\), where \(G \in \gamma O(Y, \sigma)\). Since \((X, \tau)\) is a \(\gamma - T_{\frac{1}{2}}\)-space, \(V\) is \(\gamma\)-closed (i.e., \(V = \gamma Cl(V)\)). Therefore \(\gamma Cl(V) \subseteq f^{-1}(G)\) and hence \(f\) is ap-\(\gamma\)-irresolute.

(ii) \(\to\) (i). Let \(B\) be a \(g\gamma\)-closed subset of \((X, \tau)\) and \(Y\) be the set \(X\) with the topology \(\sigma = \{\phi, Y, B\}\). Finally let \(f : (X, \tau) \to (Y, \sigma)\) be the identity map. By the assumption \(f\) is ap-\(\gamma\)-irresolute. Since \(B\) is \(g\gamma\)-closed in \((X, \tau)\) and \(\gamma\)-open in \((Y, \sigma)\) and \(B \subseteq f^{-1}(B)\), it follows that \(\gamma Cl(B) \subseteq f^{-1}(B) = B\). Hence \(B\) is \(\gamma\)-closed in \((X, \tau)\). Therefore \((X, \tau)\) is a \(\gamma - T_{\frac{1}{2}}\)-space. ■

Theorem 11. Let \((Y, \sigma)\) be a space. Then the following statements are equivalent.

(i) \((Y, \sigma)\) is a \(\gamma - T_{\frac{1}{2}}\)-space;

(ii) \(f\) is ap-\(\gamma\)-closed, for every space \((X, \tau)\) and every map \(f : (X, \tau) \to (Y, \sigma)\).

Proof. This is analogous to the proof of Theorem 10. ■

References

A. A. Nasef
Department of Mathematics and Physics
Faculty of Engineering
Kafr El-Sheikh University
Kafr El-Sheikh, Egypt

A. I. El-Maghrabi

The permanent address:
Department of Mathematics
Faculty of Science
Kafr El-Sheikh University
Kafr El-Sheikh, Egypt

The current address:
Department of Mathematics
Faculty of Science
Taibah University
Al-Madinah Al-Munawarah
P. O. BOX, 30002, K.S.A.

Received on 08.02.2011 and, in revised form, on 07.07.2012.