ON ITERATE MINIMAL STRUCTURES AND M-ITERATE CONTINUOUS FUNCTIONS

Abstract. We introduce the notion of \(m\)IT-structures determined by operators \(m\)Int and \(m\)Cl on an \(m\)-space \((X, m_X)\). By using \(m\)IT-structures, we introduce and investigate a function \(f : (X, m\)IT) \(\rightarrow (Y, m_Y)\) called MIT-continuous. As special cases of MIT-continuity, we obtain \(M\)-semicontinuity [21] and \(M\)-precontinuity [23].

Key words: \(m\)-structure, \(M\)-continuous, \(m\)-semiopen, \(m\)-preopen, \(m\)IT-structure, MIT-continuous.

AMS Mathematics Subject Classification: 54C08.

1. Introduction

Semi-open sets, preopen sets, \(\alpha\)-open sets, \(\beta\)-open sets and \(b\)-open sets play an important role in the researches of generalizations of continuity in topological spaces. By using these sets, several authors introduced and studied various types of non-continuous functions. Certain of these non-continuous functions have properties similar to those of continuous functions and they hold, in many part, parallel to the theory of continuous functions.

In [26] and [27], the present authors introduced and studied the notions of minimal structures, \(m\)-spaces, \(m\)-continuity and \(M\)-continuity. Quite recently, in [19], [20] and [22], Min and Kim introduced the notions of \(m\)-semiopen sets, \(m\)-preopen sets and \(\alpha m\)-open sets which generalize the notion of \(m\)-open sets and also \(M\)-semicontinuity, \(M\)-precontinuity and \(\alpha M\)-continuity which generalize the notion of \(M\)-continuity. Rosas et al. [30] also introduced the notions of \(m\)-semiopen sets and \(m\)-preopen sets. The notion of \(\beta m\)-open sets is introduced by Boonpok [5].

The notions of \(m\)-semiopen sets, \(m\)-preopen sets, \(\alpha m\)-open sets and \(\beta m\)-open sets are defined by using the \(m\)-interior \(m\)Int and the \(m\)-closure \(m\)Cl on an \(m\)-space \((X, m_X)\). The each family of \(m\)-semiopen sets, \(m\)-preopen sets, \(\alpha m\)-open sets or \(\beta m\)-open sets becomes an \(m\)-structure with property \(B\), that is, it is closed under arbitrary union. The purpose of the present
paper is to obtain the unified theory of M-semicontinuity, M-precontinuity, αM-continuity, βM-continuity and M-b-continuity.

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively. We recall some generalized open sets in topological spaces.

Definition 1. Let (X, τ) be a topological space. A subset A of X is said to be

(a) α-open [24] if $A \subset \text{Int}(\text{Cl}(\text{Int}(A)))$,
(b) semi-open [11] if $A \subset \text{Cl}(\text{Int}(A))$,
(c) preopen [16] if $A \subset \text{Int}(\text{Cl}(A))$,
(d) b-open [4] or γ-open [9] if $A \subset \text{Int}(\text{Cl}(A)) \cup \text{Cl}(\text{Int}(A))$,
(e) β-open [1] or semi-preopen [3] if $A \subset \text{Cl}(\text{Int}(\text{Cl}(A)))$.

The family of all α-open (resp. semi-open, preopen, b-open, β-open) sets in (X, τ) is denoted by $\alpha(X)$ (resp. $\text{SO}(X)$, $\text{PO}(X)$, $\text{BO}(X)$, $\beta(X)$).

Definition 2. Let (X, τ) be a topological space. A subset A of X is said to be α-closed [18] (resp. semi-closed [6], preclosed [16], b-closed [4], β-closed [1]) if the complement of A is α-open (resp. semi-open, preopen, b-open, β-open).

Definition 3. Let (X, τ) be a topological space and A a subset of X. The intersection of all α-closed (resp. semi-closed, preclosed, b-closed, β-closed) sets of X containing A is called the α-closure [18] (resp. semi-closure [6], preclosure [10], b-closure [4], β-closure [2]) of A and is denoted by $\alpha\text{Cl}(A)$ (resp. $s\text{Cl}(A)$, $p\text{Cl}(A)$, $b\text{Cl}(A)$, $\beta\text{Cl}(A)$).

Definition 4. Let (X, τ) be a topological space and A a subset of X. The union of all α-open (resp. semi-open, preopen, b-open, β-open) sets of X contained in A is called the α-interior [18] (resp. semi-interior [6], preinterior [10], b-interior [4], β-interior [2]) of A and is denoted by $\alpha\text{Int}(A)$ (resp. $s\text{Int}(A)$, $p\text{Int}(A)$, $b\text{Int}(A)$, $\beta\text{Int}(A)$).

Definition 5. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be irresolute [7] (resp. preirresolute [29] or M-preirresolute [17], α-irresolute [13] or strongly feebly continuous [12], γ-irresolute (= b-irresolute) [8], β-irresolute [14]) at $x \in X$ if for each semi-open (resp. preopen, α-open, γ-open, β-open) set V containing $f(x)$, there exists a semi-open (resp. preopen, α-open, γ-open, β-open) set U of X containing x such that $f(U) \subset V$. The function f is said to be irresolute (resp. preirresolute, α-irresolute, γ-irresolute, β-irresolute) if it has this property at each point $x \in X$.
3. Minimal structures and M-continuity

Definition 6. Let X be a nonempty set and $\mathcal{P}(X)$ the power set of X. A subfamily m_X of $\mathcal{P}(X)$ is called a minimal structure (briefly m-structure) on X [26], [27] if $\emptyset \in m_X$ and $X \in m_X$.

By (X, m_X), we denote a nonempty set X with an m-structure m_X on X and call it an m-space. Each member of m_X is said to be m_X-open (briefly m-open) and the complement of an m_X-open set is said to be m_X-closed (briefly m-closed).

Remark 1. Let (X, τ) be a topological space. The families τ, $\alpha(X)$, $\text{SO}(X)$, $\text{PO}(X)$, $\text{BO}(X)$ and $\beta(X)$ are all minimal structures on X.

Definition 7. Let X be a nonempty set and m_X an m-structure on X. For a subset A of X, the m_X-closure of A and the m_X-interior of A are defined in [15] as follows:

(a) $m\text{Cl}(A) = \cap \{F : A \subset F, X \setminus F \in m_X \}$,
(b) $m\text{Int}(A) = \cup \{U : U \subset A, U \in m_X \}$.

Remark 2. Let (X, τ) be a topological space and A a subset of X. If $m_X = \tau$ (resp. $\text{SO}(X)$, $\text{PO}(X)$, $\alpha(X)$, $\text{BO}(X)$, $\beta(X)$), then we have

(a) $m\text{Cl}(A) = \text{Cl}(A)$ (resp. $s\text{Cl}(A), p\text{Cl}(A), \alpha\text{Cl}(A), b\text{Cl}(A), \beta\text{Cl}(A)$),
(b) $m\text{Int}(A) = \text{Int}(A)$ (resp. $s\text{Int}(A), p\text{Int}(A), \alpha\text{Int}(A), b\text{Int}(A), \beta\text{Int}(A)$).

Lemma 1 (Maki et al. [15]). Let X be a nonempty set and m_X a minimal structure on X. For subsets A and B of X, the following properties hold:

(a) $m\text{Cl}(X \setminus A) = X \setminus m\text{Int}(A)$ and $m\text{Int}(X \setminus A) = X \setminus m\text{Cl}(A)$,
(b) If $(X \setminus A) \in m_X$, then $m\text{Cl}(A) = A$ and if $A \in m_X$, then $m\text{Int}(A) = A$,
(c) $m\text{Cl}(\emptyset) = \emptyset$, $m\text{Cl}(X) = X$, $m\text{Int}(\emptyset) = \emptyset$ and $m\text{Int}(X) = X$,
(d) If $A \subset B$, then $m\text{Cl}(A) \subset m\text{Cl}(B)$ and $m\text{Int}(A) \subset m\text{Int}(B)$,
(e) $A \subset m\text{Cl}(A)$ and $m\text{Int}(A) \subset A$,
(f) $m\text{Cl}(m\text{Cl}(A)) = m\text{Cl}(A)$ and $m\text{Int}(m\text{Int}(A)) = m\text{Int}(A)$.

Lemma 2 (Popa and Noiri [26]). Let (X, m_X) be an m-space and A a subset of X. Then $x \in m\text{Cl}(A)$ if and only if $U \cap A \neq \emptyset$ for each $U \in m_X$ containing x.

Definition 8. A minimal structure m_X on a nonempty set X is said to have property \mathcal{B} [15] if the union of any family of subsets belonging to m_X belongs to m_X.

Remark 3. If (X, τ) is a topological space, then the m-structures $\text{SO}(X)$, $\text{PO}(X)$, $\alpha(X)$, $\text{BO}(X)$ and $\beta(X)$ have property \mathcal{B}.
Lemma 3 (Popa and Noiri [28]). Let X be a nonempty set and m_X an m-structure on X satisfying property \mathcal{B}. For a subset A of X, the following properties hold:

(a) $A \in m_X$ if and only if $\text{mInt}(A) = A$,
(b) A is m_X-closed if and only if $\text{mCl}(A) = A$,
(c) $\text{mInt}(A) \in m_X$ and $\text{mCl}(A)$ is m_X-closed.

Definition 9. A function $f : (X, m_X) \to (Y, m_Y)$ is said to be M-continuous at $x \in X$ [26] if for each m_Y-open set V containing $f(x)$, there exists $U \in m_X$ containing x such that $f(U) \subset V$. The function f is M-continuous if it has this property at each $x \in X$.

Theorem 1 (Popa and Noiri [26]). For a function $f : (X, m_X) \to (Y, m_Y)$, the following properties are equivalent:

(a) f is M-continuous;
(b) $f^{-1}(V) = \text{mInt}(f^{-1}(V))$ for every m-open set V of Y;
(c) $f^{-1}(F) = \text{mCl}(f^{-1}(F))$ for every m-closed set F of Y;
(d) $\text{mCl}(f^{-1}(B)) \subset f^{-1}(\text{mCl}(B))$ for every subset B of Y;
(e) $f(\text{mCl}(A)) \subset \text{mCl}(f(A))$ for every subset A of X;
(f) $f^{-1}(\text{mCl}(B)) \subset \text{mInt}(f^{-1}(B))$ for every subset B of Y.

Corollary 1 (Popa and Noiri [26]). For a function $f : (X, m_X) \to (Y, m_Y)$, where m_X has property \mathcal{B}, the following properties are equivalent:

(a) f is M-continuous;
(b) $f^{-1}(V)$ is m-open in X for every m-open set V of Y;
(c) $f^{-1}(F)$ is m-closed in X for every m-closed set F of Y.

For a function $f : (X, m_X) \to (Y, m_Y)$, we define $D_M(f)$ as follows:

$$D_M(f) = \{ x \in X : f \text{ is not } M \text{-continuous at } x \}.$$

Theorem 2 (Noiri and Popa [25]). For a function $f : (X, m_X) \to (Y, m_Y)$, the following properties hold:

$$D_M(f) = \bigcup_{G \in m_Y} \{ f^{-1}(G) \cap \text{mInt}(f^{-1}(G)) \} = \bigcup_{B \in \mathcal{P}(Y)} \{ f^{-1}(\text{mInt}(B)) \cap \text{mInt}(f^{-1}(B)) \} = \bigcup_{B \in \mathcal{P}(Y)} \{ \text{mCl}(f^{-1}(B)) - f^{-1}(\text{mCl}(B)) \} = \bigcup_{A \in \mathcal{P}(X)} \{ \text{mCl}(A) - f^{-1}(\text{mCl}(f(A))) \} = \bigcup_{F \in \mathcal{F}} \{ \text{mCl}(f^{-1}(F)) - f^{-1}(F) \},$$

where \mathcal{F} is the family of m-closed sets of (Y, m_Y).
4. \(m \)-Iterate structures and \(M \)-iterate continuity

Definition 10. Let \((X, m_X)\) be an \(m \)-space. A subset \(A \) of \(X \) is said to be

(a) \(\alpha m \)-open [20] if \(A \subset m \text{Int}(m \text{Cl}(m \text{Int}(A))) \),

(b) \(m \)-semiopen [19] if \(A \subset m \text{Cl}(m \text{Int}(A)) \),

(c) \(m \)-preopen [22] if \(A \subset m \text{Int}(m \text{Cl}(A)) \),

(d) \(\beta m \)-open [5] if \(A \subset m \text{Cl}(m \text{Int}(m \text{Cl}(A))) \),

(e) \(m \)-\(b \)-open if \(A \subset m \text{Int}(m \text{Cl}(A)) \cup m \text{Cl}(m \text{Int}(A)). \)

The family of all \(\alpha m \)-open (resp. \(m \)-semiopen, \(m \)-preopen, \(\beta m \)-open, \(m \)-\(b \)-open) sets in \((X, m_X)\) is denoted by \(\alpha m(X) \) (resp. \(m \text{SO}(X) \), \(m \text{PO}(X) \), \(\beta m(X), m \text{BO}(X) \).)

Remark 4. Let \((X, m_X)\) be an \(m \)-space.

(a) Similar definitions of \(m \)-semiopen sets, \(m \)-preopen sets, \(\alpha m \)-open sets, \(\beta m \)-open sets are provided in [30].

(b) The families \(\alpha m(X), m \text{SO}(X), m \text{PO}(X), \beta m(X) \) and \(m \text{BO}(X) \) are all minimal structures on \(X \).

Let \((X, m_X)\) be an \(m \)-space. Then \(m \text{SO}(X), m \text{PO}(X), \alpha m(X), \beta m(X) \) and \(m \text{BO}(X) \) are determined by iterating operators \(m \text{Int} \) and \(m \text{Cl} \). Hence, they are called \(m \)-iterate structures and are denoted by \(m \text{IT}(X) \) (briefly \(m \text{IT} \)).

Remark 5. (a) It easily follows from Lemma 3.1(3)(4) that \(m \text{SO}(X), m \text{PO}(X), \alpha m(X), \beta m(X) \) and \(m \text{BO}(X) \) are minimal structures with property \(B \). They are also shown in Theorem 3.5 of [19], Theorem 3.4 of [22] and Theorem 3.4 of [20] for \(m \text{SO}(X), m \text{PO}(X) \) and \(\alpha m(X) \), respectively.

(b) Let \((X, m_X)\) be an \(m \)-space and \(m \text{IT}(X) \) an \(m \)-iterate structure on \(X \). If \(m \text{IT}(X) = m \text{SO}(X) \) (resp. \(m \text{PO}(X), \alpha m(X), \beta m(X) \), \(m \text{BO}(X) \)), then we obtain the following definitions (for \(m \text{SO}(X), m \text{PO}(X) \) and \(\alpha m(X) \), they are provided in [19], [23] and [20], respectively):

\[
\begin{align*}
m \text{ITCl}(A) &= m \text{Cl}(A) \quad \text{(resp.} \ m \text{PO}(A), m \text{Cl}(A), \beta m \text{Cl}(A), m \text{BO}(A)), \\
m \text{ITInt}(A) &= m \text{Int}(A) \quad \text{(resp.} \ m \text{PO}(A), m \text{Int}(A), \beta m \text{Int}(A), m \text{BO}(A)).
\end{align*}
\]

Remark 6. (1) By Lemmas 1 and 3, we obtain Theorem 3.9 of [19], Theorems 2.3 and 2.4 of [23] and Theorems 3.8 and 3.9 of [20].

(b) By Lemma 2, we obtain Theorem 3.10 of [19], Lemma 3.9 of [22] and Theorem 3.10 of [20].

Definition 11. A function \(f : (X, m_X) \to (Y, m_Y) \) is said to be \(M \)-semi-continuous [19] (resp. \(M \)-precontinuous [22], \(\alpha M \)-continuous [20], \(\beta M \)-continuous, \(M \)-\(b \)-continuous) at \(x \in X \) if for each \(m \)-open set \(V \) containing \(f(x) \), there exists \(m \)-semiopen set (resp. \(m \)-preopen, \(\alpha m \)-open, \(\beta m \)-open, \(m \)-\(b \)-open).
m-b-open) set U of X containing x such that $f(U) \subseteq V$. The function f is said to be M-semicontinuous (resp. M-precontinuous, αM-continuous, βM-continuous, M-b-continuous) if it has this property at each $x \in X$.

Remark 7. By Definition 11 and Remark 5, it follows that a function $f : (X, m_X) \to (Y, m_Y)$ is M-semicontinuous if a function $f : (X, mSO(X)) \to (Y, m_Y)$ is M-continuous.

Definition 12. A function $f : (X, m_X) \to (Y, m_Y)$ is said to be MIT-continuous at $x \in X$ (on X) if $f : (X, mIT(X)) \to (Y, m_Y)$ is M-continuous at $x \in X$ (on X).

Remark 8. Let (X, m_X) be a minimal space. If $mIT(X) = mSO(X)$ (resp. $mPO(X)$, $\alpha m(X)$, $\beta m(X)$, $mBO(X)$) and $f : (X, m_X) \to (Y, m_Y)$ is MIT-continuous, then f is M-semicontinuous (resp. M-precontinuous, αM-continuous, βM-continuous, M-b-continuous).

Since $mIT(X)$ has property \mathcal{B}, by Theorems 1 and 2 and Corollary 1 we have the following theorems.

Theorem 3. For a function $f : (X, m_X) \to (Y, m_Y)$, the following properties are equivalent:

(a) f is MIT-continuous;
(b) $f^{-1}(V)$ is MIT-open for every m-open set V of Y;
(c) $f^{-1}(F)$ is MIT-closed for every m-closed set F of Y;
(d) $mITCl(f^{-1}(B)) \subseteq f^{-1}(mCl(B))$ for every subset B of Y;
(e) $f(mITCl(A)) \subseteq mCl(f(A))$ for every subset A of X;
(f) $f^{-1}(mInt(B)) \subseteq mITInt(f^{-1}(B))$ for every subset B of Y.

For a function $f : (X, m_X) \to (Y, m_Y)$, we define $D_{MIT}(f)$ as follows:

$$D_{MIT}(f) = \{x \in X : f \text{ is not MIT-continuous at } x\}.$$

Theorem 4. For a function $f : (X, m_X) \to (Y, m_Y)$, the following properties hold:

$$D_{MIT}(f) = \bigcup_{G \subseteq m_Y} \{f^{-1}(G) \cap mITInt(f^{-1}(G))\}$$
$$= \bigcup_{B \subseteq \mathcal{P}(Y)} \{f^{-1}(mInt(B)) \cap mITInt(f^{-1}(B))\}$$
$$= \bigcup_{B \subseteq \mathcal{P}(Y)} \{mITCl(f^{-1}(B)) - f^{-1}(mCl(B))\}$$
$$= \bigcup_{A \subseteq \mathcal{P}(X)} \{mITCl(A) - f^{-1}(mCl(f(A)))\}$$
$$= \bigcup_{F \subseteq \mathcal{F}} \{mITCl(f^{-1}(F)) - f^{-1}(F)\},$$

where \mathcal{F} is the family of m-closed sets of (Y, m_Y).

Remark 9. (a) If $mIT(X) = mSO(X)$ (resp. $mPO(X)$, $\alpha m(X)$, $\beta m(X)$, $mBO(X)$) and $f : (X, m_X) \to (Y, m_Y)$ is MIT-continuous, then by Theo-
rems 3 and 4 we obtain characterizations of M-semicontinuous (resp. M-pre-
continuous, αM-continuous, βM-continuous, M-b-continuous) functions.

(b) If $\text{mIT}(X) = \text{mSO}(X)$ (resp. $\text{mPO}(X)$, $\text{mam}(X)$), then by Theorem 3
we obtain Theorem 3.15 of [19] (resp. Theorem 3.12 of [22], Theorem 3.14
of [20]).

For example, for $\text{mIT}(X) = \beta m(X)$ and $m_Y = \beta(Y)$, we obtain the
following characterizations.

Corollary 2. For a function $f : (X, m_X) \to (Y, m_Y)$, the following
properties are equivalent:

(a) f is βM-continuous;
(b) $f^{-1}(V)$ is βm-open for every β-open set V of Y;
(c) $f^{-1}(F)$ is βm-closed for every β-closed set F of Y;
(d) $\beta m\text{Cl}(f^{-1}(B)) \subset f^{-1}(\beta \text{Cl}(B))$ for every subset B of Y;
(e) $f(\beta m\text{Cl}(A)) \subset \beta \text{Cl}(f(A))$ for every subset A of X;
(f) $f^{-1}(\beta \text{Int}(B)) \subset \beta m\text{Int}(f^{-1}(B))$ for every subset B of Y.

5. Some properties of MIT-continuous functions

Since the study of MIT-continuity is reduced from the study of M-conti-
nuity, the properties of MIT-continuous functions follow from the properties
of M-continuous functions in [26].

Definition 13. An m-space (X, m_X) is said to be m-T_2 [26] if for each
distinct points $x, y \in X$, there exist $U, V \in m_X$ containing x and y, respec-
tively, such that $U \cap V = \emptyset$.

Definition 14. An m-space (X, m_X) is said to be MIT-T_2 if the m-space
$(X, \text{mIT}(X))$ is m-T_2.

Hence, an m-space (X, m_X) is MIT-T_2 if for each distinct points $x, y \in X$, there exist $U, V \in \text{mIT}(X)$ containing x and y, respectively, such that $U \cap V = \emptyset$.

Remark 10. Let (X, m_X) be an m-space. If $\text{mIT}(X) = \text{mSO}(X)$ (resp.
$\text{mPO}(X)$), then by Definition 14 we obtain the definition of m-semi-T_2
spaces in [21] (resp. m-pre-T_2-spaces in [23]).

Lemma 4 (Popa and Noiri [26]). If $f : (X, m_X) \to (Y, m_Y)$ is an
M-continuous injection and (Y, m_Y) is m-T_2, then (X, m_X) is m-T_2.

Theorem 5. If $f : (X, m_X) \to (Y, m_Y)$ is an MIT-continuous injection
and (Y, m_Y) is m-T_2, then X is MIT-T_2.

Proof. The proof follows from Definition 14 and Lemma 4. □
Definition 15. An m-space \((X, m_X)\) is said to be m-compact [26] if every cover of \(X\) by \(m_X\)-open sets of \(X\) has a finite subcover.

A subset \(K\) of an m-space \((X, m_X)\) is said to be m-compact [26] if every cover of \(K\) by \(m_X\)-open sets of \(X\) has a finite subcover.

Definition 16. An m-space \((X, m_X)\) is said to be mIT-compact if the m-space \((X, m_{IT}(X))\) is m-compact.

A subset \(K\) of an m-space \((X, m_X)\) is said to be mIT-compact if every cover of \(K\) by \(m_{IT}\)-open sets of \(X\) has a finite subcover.

Remark 11. Let \((X, m_X)\) be an m-space. If \(m_{IT}(X) = m_{SO}(X)\) (resp. \(m_{PO}(X)\)), then by Definition 16 we obtain the definition of m-semicompact spaces in [21] (resp. m-precompact spaces in [23]).

Lemma 5 (Popa and Noiri [26]). Let \(f : (X, m_X) \to (Y, m_Y)\) be an \(M\)-continuous function. If \(K\) is an m-compact set of \(X\), then \(f(K)\) is m-compact.

Theorem 6. If \(f : (X, m_X) \to (Y, m_Y)\) is an MIT-continuous function and \(K\) is an mIT-compact set of \(X\), then \(f(K)\) is m-compact.

Proof. The proof follows from Definition 16 and Lemma 5.

Definition 17. A function \(f : (X, m_X) \to (Y, m_Y)\) is said to have a strongly m-closed graph (resp. m-closed graph) [26] if for each \((x, y)\) \(\in (X \times Y) \setminus G(f)\), there exist \(U \in m_X\) containing \(x\) and \(V \in m_Y\) containing \(y\) such that \([U \times mCl(V)] \cap G(f) = \emptyset\) (resp. \([U \times V] \cap G(f) = \emptyset\)).

Definition 18. A function \(f : (X, m_X) \to (Y, m_Y)\) is said to have a strongly mIT-closed graph (resp. mIT-closed graph) if a function \(f : (X, m_{IT}(X)) \to (Y, m_Y)\) has a strongly m-closed graph (resp. m-closed graph).

Hence, a function \(f : (X, m_X) \to (Y, m_Y)\) has a strongly mIT-closed graph (resp. mIT-closed graph) if for each \((x, y)\) \(\in (X \times Y) \setminus G(f)\), there exist \(U \in m_{IT}(X)\) containing \(x\) and \(V \in m_Y\) containing \(y\) such that \([U \times mCl(V)] \cap G(f) = \emptyset\) (resp. \([U \times V] \cap G(f) = \emptyset\)).

Lemma 6 (Popa and Noiri [26]). If \(f : (X, m_X) \to (Y, m_Y)\) is an \(M\)-continuous function and \((Y, m_Y)\) is m-T\(_2\), then \(f\) has a strongly m-closed graph.

Theorem 7. If \(f : (X, m_X) \to (Y, m_Y)\) is an MIT-continuous function and \((Y, m_Y)\) is m-T\(_2\), then \(f\) has a strongly mIT-closed graph.

Proof. The proof follows from Definition 18 and Lemma 6.
Lemma 7 (Popa and Noiri [26]). If $f : (X, m_X) \to (Y, m_Y)$ is a surjective function with a strongly m-closed graph, then (Y, m_Y) is m-T_2.

Theorem 8. If $f : (X, m_X) \to (Y, m_Y)$ is a surjective function with a strongly mIT-closed graph, then (Y, m_Y) is m-T_2.

Proof. The proof follows from Definition 18 and Lemma 7. ■

Lemma 8 (Popa and Noiri [26]). Let (X, m_X) be an m-space and m_X have property B. If $f : (X, m_X) \to (Y, m_Y)$ is an injective M-continuous function with an m-closed graph, then X is m-T_2.

Theorem 9. If $f : (X, m_X) \to (Y, m_Y)$ is an injective MIT-continuous function with an mIT-closed graph, then X is mIT-T_2.

Proof. The proof follows from Definition 18, Lemma 8 and the fact that $mIT(X)$ has property B. ■

Definition 19. An m-space (X, m_X) is said to be m-connected [26] if X cannot be written as the union of two nonempty sets of m_X.

Definition 20. An m-space (X, m_X) is said to be mIT-connected if the m-space $(X, mIT(X))$ is m-connected.

Hence, the m-space $(X, mIT(X))$ is m-connected if X cannot be written as the union of two nonempty sets of $mIT(X)$.

Lemma 9 (Popa and Noiri [26]). Let $f : (X, m_X) \to (Y, m_Y)$ be a function, where m_X has property B. If f is an M-continuous surjection and (X, m_X) is m-connected, then (Y, m_Y) is m-connected.

Theorem 10. If $f : (X, m_X) \to (Y, m_Y)$ is an mIT-continuous surjection and (X, m_X) is mIT-connected, then (Y, m_Y) is m-connected.

Proof. The proof follows from Definition 20, Lemma 9 and the fact that $mIT(X)$ has property B. ■

Definition 21. Let (X, m_X) be an m-space and A a subset of X. The m-frontier of A, $mFr(A)$, [27] is defined by $mFr(A) = mCl(A) \cap mCl(X \setminus A) = mCl(A) \setminus mInt(A)$.

Definition 22. Let (X, m_X) be an m-space and A a subset of X. The mIT-frontier of A, $mITFr(A)$, is defined by $mITFr(A) = mITCl(A) \cap mITCl(X \setminus A) = mITCl(A) \setminus mITInt(A)$.
Lemma 10 (Popa and Noiri [28]). The set of all points of \(X \) at which a function \(f : (X, m_X) \rightarrow (Y, m_Y) \) is not \(M \)-continuous is identical with the union of the \(m \)-frontier of the inverse images of \(m \)-open sets of \((Y, m_Y) \) containing \(f(x) \).

Theorem 11. The set of all points of \(X \) at which a function \(f : (X, m_X) \rightarrow (Y, m_Y) \) is not MIT-continuous is identical with the union of the \(m_{IT} \)-frontier of the inverse images of \(m \)-open sets of \((Y, m_Y) \) containing \(f(x) \).

Proof. The proof follows from Definition 22 and Lemma 10. ■

References

