Abstract. In this paper, characterizations and properties of e-continuous functions are given. Moreover, Urysohn’s Lemma on e-normal spaces is proved.

Key words: e-open and e-closed subsets; e-continuous function; e-irresolute function; e-normal spaces; Urysohn’s lemma.

AMS Mathematics Subject Classification: 54A05, 54D15.

1. Introduction

In recent years, many researchers introduced different forms of continuous functions. El-Atik et al. [1] presented γ-open sets and γ-continuity. Hatir and Noiri et al. [5] has introduced δ-β-open sets and δ-β-continuity. Raychaudhurim and Mukherjee et al. [10] investigated δ-preopen sets and δ-semi-continuity but also discussed the relationship between δ-β-continuity and δ-semi-continuity. Noiri et al. [12] not only studied δ-semi-sets and δ-semi-continuity but also discussed the relationship between δ-β-continuity and δ-semi-continuity. In 2008, Ekici et al. [3] introduced the concept of e-open sets and investigated e-continuity. The purpose of this paper is to study further e-continuity. We will give characterizations and properties of e-continuity. We also discuss the relationship between e-continuity and other forms of continuity. In addition, Urysohn’s Lemma on e-normal spaces is proved.

2. Preliminaries

Throughout this paper, spaces always mean topological spaces with no separation properties assumed, and maps are onto. If X is a space and $A \subset X$, then the interior and the closure of A in X are denoted by iA, cA, respectively.

Let $f_i : 2^X \rightarrow 2^X$ be a operator ($i = 1, 2, \ldots, n$) and $A \subset X$. We define

$$f_1f_2 \cdots f_n A = f_1(f_2(\cdots (f_n(A)) \cdots)).$$
Let X be a space, $A \subset X$ and $x \in X$. A is called regular open (resp. regular closed) if $A = icA$ (resp. $A = ciA$). x is called a δ-cluster point of A if $A \cap icU \neq \emptyset$ for each open set U containing x. The set of all δ-cluster points of A is called the δ-closure [7] of A and is denoted by $c_\delta A$. A is called δ-closed if $c_\delta A = A$ and the complements are called δ-open. The union of all δ-open sets contained in A is called the δ-interior [7] of A and is denoted by $i_\delta A$. Obviously, A is δ-open if and only if $A = i_\delta A$.

Let (X, τ) be a space and $x \in X$. Then $\tau(x)$ means the family of all open neighborhoods of x. Put

$$\tau_\delta = \{ A : A \text{ is } \delta\text{-open in } X \}.$$

It is not difficult that τ_δ forms a topology on X and $\tau_\delta \subset \tau$.

Definition 1. Let X be a space and $A \subset X$. Then A is called

(a) e-open [3] if $A \subset ic_\delta A \cup ci_\delta A$.

(b) δ-preopen [10] if $A \subset ic_\delta A$.

(c) δ-semiopen [6] if $A \subset ci_\delta A$.

(d) δ-β-open [4] if $A \subset ci_\delta A$.

(e) b-open [2] (or γ-open [1]) if $A \subset icA \cup ciA$.

The family of all e-open (resp. δ-preopen, δ-semiopen, δ-β-open, b-open) subsets of X is denoted by $EO(X)$ (resp. $\delta PO(X)$, $\delta SO(X)$, $\delta BO(X)$).

Definition 2. The complement of an e-open (resp. δ-preopen, δ-semiopen, δ-β-open, b-open) set is called e-closed [3] (resp. δ-preclosed [10], δ-semiclosed [6], δ-β-closed [4], b-closed [2]).

Definition 3. The union of all e-open (resp. δ-preopen, δ-semiopen, δ-β-open, b-open) subsets of X contained in A is called the e-interior [3] (resp. δ-preinterior [10], δ-semi-interior [12], δ-β-interior [4], b-interior [2]) of A and is denoted by $i_e A$ (resp. $p_i_\delta A$, $s_i_\delta A$, $\beta_i_\delta A$, $i_b A$).

Definition 4. The intersection of all e-closed (resp. δ-preclosed, δ-semiclosed, δ-β-closed, b-closed) sets of X containing A is called the e-closure [3] (resp. δ-preclosure [10], δ-semiclosure [12], δ-β-closure [4], b-closure [2]) of A and is denoted by $c_e A$ (resp. $p_c_\delta A$, $s_c_\delta A$, $\beta_c_\delta A$, $c_b A$).

Lemma 1 ([4]). Let X be a space and $A \subset X$. Then

(a) $p_i_\delta A = A \cap ic_\delta A$; $p_c_\delta A = A \cup ci_\delta A$.

(b) $s_i_\delta A = A \cap ci_\delta A$; $s_c_\delta A = A \cup ic_\delta A$.

(c) $\beta_i_\delta A = A \cap ci_\delta A$; $\beta_c_\delta A = A \cup ic_\delta A$.

Proposition 1 ([3]). Let X be a space and $A \subset X$. Then A is e-open in X if and only if $A = p_i_\delta A \cup s_i_\delta A$.

Theorem 1 ([3]). Let X be a space and $A \subset X$. Then
(a) $i_e A = A \cap (ic_\delta A \cup ci_\delta A)$.
(b) $c_e A = A \cup (ci_\delta A \cap ic_\delta A)$.
(c) $i_e (X - A) = X - c_e A$.
(d) $x \in i_e A$ if and only if $U \subset A$ for some $U \in EO(X)$ containing x.
(e) A is e-open in X if and only if $A = i_e A$.

Theorem 2 ([3]). Let X be a space. Then
(a) The union of any family of e-open subsets of X is e-open.
(b) The intersection of any family of e-closed subsets of X is e-closed.

Proposition 2. Let X be a space. Then the intersection of an open subset and a e-open subset is e-open in X.

Proof. Suppose $A \in EO(X)$ and $B \in \tau$. By Proposition 1, then $A \cap B = (p_1 \delta A \cup s_1 \delta A) \cap (p_2 \delta A \cap N B) \cup (s_2 \delta A \cap N B) = (p_1 \delta A \cap N B) \cup (s_2 \delta A \cap N B) \subset (p_2 \delta A \cap N B) \cup (s_2 \delta A \cap N B) = (A \cap s_2 \delta A \cap N B) \cup (A \cap p_2 \delta A \cap N B) \subset (ic_\delta A \cap ic_\delta B) \cup (ci_\delta A \cap ic_\delta B) = ic_\delta (A \cap B) \cup ci_\delta (A \cap B)$. Hence $A \cap B$ is e-open in X.

Definition 5. A function $f : X \to Y$ is called δ-continuous [11] if $f^{-1}(V)$ is regular open in X for each $V \in RO(Y)$.

Definition 6. A function $f : X \to Y$ is called δ-β-continuous [5] (resp. γ-continuous [1], δ-almost continuous [10], δ-semi-continuous [12]) if $f^{-1}(V)$ is δ-β-open (resp. b-open, δ-preopen, δ-semiopen) in X for each open set V in Y.

Lemma 2 ([9]). If $f : X \to Y$ is a function, $A \subset X$ and $B \subset Y$, then $f^{-1}(B) \subset A$ if and only if $B \subset Y - f(X - A)$.

3. e-continuous functions

Definition 7 ([3]). A function $f : (X, \tau) \to (Y, \sigma)$ is called e-continuous if $f^{-1}(V)$ is e-open in X for each $V \in \sigma$.

Every δ-almost continuous and δ-semi-continuous is e-continuous but the converse is not true. Every e-continuous is δ-β-continuous but the converse is also not true, as shown by the following Example 4.4 [3], Example 4.5 [3] and Example 1.

Example 1. Let $X = Y = \{x, y, z\}$, $\tau = \{\emptyset, \{x\}, \{y\}, \{x, y\}, X\}$ and
\[
\sigma = \{\emptyset, \{x, z\}, Y\}.
\]

Let $f : X \to Y$ be the identity function.
Since $\tau(x) = \{\{x\}, \{x, y\}, X\}, \tau(y) = \{\{y\}, \{x, y\}, X\}$ and $\tau(z) = \{X\}$, then $c_\delta\{x, z\} = \{x, z\}$ and $i_\delta\{x, z\} = \{x, z\}$ and $ci_\delta\{x, z\} \cup ic_\delta\{x, z\} = \emptyset \cup \{x\} = \{x\}$. Therefore for each open subset $\{x, z\} \in \sigma$, then $f^{-1}\{\{x, z\}\} = \{x, z\} \subset ci_\delta f^{-1}\{\{x, z\}\} = \{x, z\}$ and $f^{-1}\{\{x, z\}\}$ is δ-β-open in X. Hence f is δ-β-continuous.

But $f^{-1}\{\{x, z\}\} = \{x, z\} \not\subset ci_\delta f^{-1}\{\{x, z\}\} \cup ic_\delta f^{-1}\{\{x, z\}\} = \emptyset \cup \{x\} = \{x\}$ is not e-open in X. Hence f is not e-continuous.

The following Theorem 3 gives some characterizations of e-continuity.

Theorem 3. Let $f : X \to Y$ be a function. Then the following are equivalent.

(a) f is e-continuous;
(b) For each $x \in X$ and each open neighborhood V of $f(x)$, there exists $U \in EO(X)$ containing x such that $f(U) \subset V$;
(c) $f^{-1}(V)$ is e-closed in X for each closed subset V of Y;
(d) $ci_\delta f^{-1}(B) \cap ic_\delta f^{-1}(B) \subset f^{-1}(cB)$ for each $B \subset Y$;
(e) $f(ci_\delta A \cap ic_\delta A) \subset cf(A)$ for each $A \subset X$;
(f) $f^{-1}(i_B) \subset i_e f^{-1}(B)$ for each $B \subset Y$.

Proof. (a) \iff (b), (a) \iff (c) are obvious.

(c) \Rightarrow (d). Let $B \subset Y$. By (3), then we obtain $f^{-1}(cB)$ is e-closed subset of X. Hence $ci_\delta f^{-1}(B) \cap ic_\delta f^{-1}(B) \subset ci_\delta f^{-1}(cB) \cap ic_\delta f^{-1}(cB) \subset f^{-1}(cB)$.

(d) \Rightarrow (c). For any closed subset $V \subset Y$. By (4), then we have $ci_\delta f^{-1}(V) \cap ic_\delta f^{-1}(V) \subset f^{-1}(cV) = f^{-1}(V)$. Hence $f^{-1}(V)$ is e-closed in X.

(d) \Rightarrow (e). Put $B = f(A)$. By (4), then we obtain $ci_\delta f^{-1}(f(A)) \cap ic_\delta f^{-1}(f(A)) \subset f^{-1}(cf(A))$ and $ci_\delta A \cap ic_\delta A \subset f^{-1}(cf(A))$. Hence $f(ci_\delta A \cap ic_\delta A) \subset cf(A)$.

(e) \Rightarrow (d) is obvious.

(c) \Rightarrow (f). Let $B \subset Y$, then $Y - iB$ is closed subset in Y. By (3), then we have $f^{-1}(Y - iB) \in EC(X)$ and $ci_\delta f^{-1}(Y - iB) \cap ic_\delta f^{-1}(Y - iB) \subset f^{-1}(Y - iB)$. Thus, we obtain $(X - (ci_\delta f^{-1}(iB))) \cap (X - (ic_\delta f^{-1}(iB))) \subset X - f^{-1}(iB)$ and $X - (ci_\delta f^{-1}(iB) \cup ic_\delta f^{-1}(iB)) \subset X - f^{-1}(iB)$. Hence $f^{-1}(iB) \subset ci_\delta f^{-1}(iB) \cup ic_\delta f^{-1}(iB) \subset ci_\delta f^{-1}(B) \cup ic_\delta f^{-1}(B)$ and $f^{-1}(iB) \subset i_e f^{-1}(B)$.

(f) \Rightarrow (c) is obvious.\blacksquare

Theorem 4. Let $f : X \to Y$ be a function. If $if(A) \subset f(i_e A)$ for each $A \subset X$, then f is e-continuous.

Proof. Suppose that $x \in X$ and V is an open neighborhood of $f(x)$. Since $if(A) \subset f(i_e A)$, then $V = iV = if(f^{-1}(V)) \subset f(i_e f^{-1}(V))$. Thus,
we have \(f^{-1}(V) \subset i_e f^{-1}(V) \). Set \(U = f^{-1}(V) \), then \(U \in EO(X) \) containing \(x \) and \(f(U) \subset V \). By Theorem 3, then we obtain \(f \) is \(e \)-continuous. \(\blacksquare \)

4. Properties of \(e \)-continuous functions

Theorem 5. Let \(X \) and \(Y \) be two spaces and \(A \) be an open subset of \(X \). If \(f : X \to Y \) is \(e \)-continuous, then \(f|_A : A \to Y \) is also \(e \)-continuous.

Proof. Let \(V \) be open in \(Y \). Since \(f \) is \(e \)-continuous, then \((f|_A)^{-1}(V) = (f|_A)^{-1}(V \cap f(A)) = f^{-1}(V \cap f(A)) = f^{-1}(V) \cap A \in EO(X) \). Therefore \(f|_A \) is \(e \)-continuous. \(\blacksquare \)

Definition 8. Let \(X \) be a space. Let \(\{x_\alpha, \alpha \in \Lambda\} \) be a net in \(X \) and \(x \in X \). Then \(\{x_\alpha, \alpha \in \Lambda\} \) is called \(e \)-converges to \(x \) in \(X \), we denote \(x_\alpha \to^e x \), if for every \(e \)-open set \(U \) containing \(x \) there exists a \(\alpha_0 \in \Lambda \) such that \(x_\alpha \in U \) for every \(\alpha \geq \alpha_0 \).

Lemma 3. Let \(X \) be a space and \(x \in X, A \subset X \). Then \(x \in c_eA \) if and only if there exists a net consisting of elements of \(A \) and converging to \(x \).

Proof. **Necessity.** Suppose \(x \in c_eA \) and we denote by \(U(x) \) the set of all \(e \)-open set containing \(x \) directed by the relation \(\supset \), i.e., define that \(U_1 \supset U_2 \) if \(U_1 \supset U_2 \). Thus, we can easily check that \(x_U \to^e x \) for each \(x_U \in U \cap A \).

Sufficiency. Let \(x_\alpha \to^e x \) in \(A \). For every \(e \)-open set \(U \) containing \(x \) there exists a \(\alpha_0 \in \Lambda \) such that \(x_\alpha \in U \) for every \(\alpha \geq \alpha_0 \). Thus, we have \(U \cap A \neq \emptyset \). Hence \(x \in c_eA \). \(\blacksquare \)

Theorem 6. A function \(f : X \to Y \) is \(e \)-continuous if and only if for any \(x \in X \), the net \(\{x_\alpha, \alpha \in \Lambda\} \) \(e \)-converges to \(x \) in \(X \), then the net \(\{f(x_\alpha), \alpha \in \Lambda\} \) converges to \(f(x) \) in \(Y \).

Proof. **Necessity.** Suppose a net \(\{x_\alpha, \alpha \in \Lambda\} \) \(e \)-converges to \(x \) in \(X \) and a open subset \(V \) of \(Y \) containing \(f(x) \). Then there exists a \(\alpha_0 \in \Lambda \) such that \(x_\alpha \in U \) for every \(\alpha \geq \alpha_0 \). Since \(f \) is \(e \)-continuous, then there exists a \(U \in EO(X) \) containing \(x \) such that \(f(U) \subset V \) with Theorem 3. Thus, we have \(f(x_\alpha) \in V \) for \(\alpha \geq \alpha_0 \). Hence \(\{f(x_\alpha), \alpha \in \Lambda\} \) converges to \(f(x) \) in \(Y \).

Sufficiency. By Theorem 3, we have \(f(c_eA) \subset cf(A) \). By Lemma 3, then there exists a net converging to \(x \) in \(A \) for every \(x \in c_eA \). By hypothesis, then there exists a net converges to \(f(x) \) in \(f(A) \). This implies the net \(e \)-converges to \(f(x) \). Again by Lemma 3, we obtain \(f(x) \in c_e f(A) \). Hence \(f \) is \(e \)-continuous. \(\blacksquare \)
Theorem 7. Let \(f, g : X \to Y \) be two functions and let \(h : X \to Y \times Y \) be a function, defined by \(h(x) = (f(x), g(x)) \) for each \(x \in X \). Then \(f \) and \(g \) are \(e \)-continuous if and only if \(h \) is \(e \)-continuous.

Proof. Necessity. Let a net \(\{x_{\alpha}, \alpha \in \Lambda \} \) \(e \)-converges to \(x \) for every \(x \in X \). For every open neighborhood \(W \) of \(h(x) \) there exist open subsets \(U \) and \(V \) in \(Y \) such that \((f(x), g(x)) = h(x) \in U \times V \subset W \). Thus, we have \(f(x) \in U \) and \(g(x) \in V \). Since \(f \) is \(e \)-continuous, then there exists a \(\alpha_1 \in \Lambda \) such that \(f(x_{\alpha}) \in U \) for every \(\alpha \geq \alpha_1 \) with Theorem 6. Similarly, there exists a \(\alpha_2 \in \Lambda \) such that \(g(x_{\alpha}) \in V \) for every \(\alpha \geq \alpha_2 \). Set \(\alpha_0 = \max\{\alpha_1, \alpha_2\} \), then \(f(x_{\alpha}) \in U \) and \(g(x_{\alpha}) \in V \) for every \(\alpha \geq \alpha_0 \). Thus, we obtain \(h(x_{\alpha}) = (f(x_{\alpha}), g(x_{\alpha})) \in U \times V \subset W \). Hence \(h \) is \(e \)-continuous.

Sufficiency. Suppose \(p_Y : Y \times Y \to Y \) be the natural projections and \(f = p_Y \circ h \). Let \(U \) is an open subset of \(Y \). Then \(f^{-1}(V) = h^{-1}(p_Y^{-1}(V)) \). Since \(p_Y \) is continuous, then \(p_Y^{-1}(V) \) is open set in \(Y \times Y \). Since \(h \) is \(e \)-continuous, then \(h^{-1}(p_Y^{-1}(V)) \) is \(e \)-open set in \(X \). Hence \(f \) is \(e \)-continuous. Similarly, we can prove that \(g \) is \(e \)-continuous.

Definition 9. Let \(\mathcal{F} \) be a filter base in a space \(X \) and \(x \in X \). Then \(\mathcal{F} \) is called \(e \)-converges to \(x \), we denote \(\mathcal{F} \to^e x \), if for every \(e \)-open set \(U \) containing \(x \), there exists a \(F \in \mathcal{F} \) such that \(F \subset U \).

Theorem 8. A function \(f : X \to Y \) is \(e \)-continuous if and only if the filter base \(f(\mathcal{F}) = \{f(A) : A \in \mathcal{F}\} \) converges to \(f(x) \) in \(Y \) for every filter base \(\mathcal{F} \) \(e \)-converges to \(x \) in \(X \).

Proof. Necessity. Suppose \(x \in X \) and \(V \) be an open set containing \(f(x) \) in \(Y \). Since \(f \) be \(e \)-continuous, then there exists a \(U \in EO(X) \) containing \(x \) such that \(f(U) \subset V \) with Theorem 3. Let \(\mathcal{F} \to^e x \), then there exists a \(F \in \mathcal{F} \) such that \(F \subset U \) for every \(U \in EO(X) \) containing \(x \). Thus, we have \(f(x) \in f(F) \subset f(U) \subset V \) in \(Y \) for every \(f(F) \in f(\mathcal{F}) \). Hence filter base \(f(\mathcal{F}) \) converges to \(f(x) \).

Sufficiency. Suppose \(x \in X \) and \(V \) be an open set containing \(f(x) \) in \(Y \). Let filter base \(\mathcal{U}(x) \) be the set of all \(e \)-open set \(U \) containing \(x \) in \(X \), then \(\mathcal{U}(x) \to^e x \). By hypothesis, then \(f(\mathcal{U}(x)) \) converges to \(f(x) \). Thus, we have \(F \subset V \) for some a \(F \in f(\mathcal{U}(x)) \) and there exists a \(U \in \mathcal{U}(x) \) such that \(f(U) \subset V \). Hence \(f \) is \(e \)-continuous.

Theorem 9. If \(f : X \to Y \) is \(e \)-continuous and \(g : Y \to Z \) is continuous, then the composition \(g \circ f : X \to Z \) is \(e \)-continuous.

Proof. Suppose \(x \in X \) and \(V \) be an open neighborhood of \(g(f(x)) \). Since \(g \) is continuous, then there exists a \(g^{-1}(V) \) open in \(Y \) containing \(f(x) \). Since \(f \) is \(e \)-continuous, then there exists a \(U \in EO(X) \) containing \(x \) such
that \(f(U) \subset g^{-1}(V) \). Thus, we have \((g \circ f)(U) \subset (g \circ g^{-1})(V) \subset V\). Hence \(g \circ f\) is e-continuous.

Definition 10. A function \(f : X \rightarrow Y \) is called e-irresolute if \(f^{-1}(V) \in EO(X) \) for each \(V \in EO(Y) \).

Definition 11. A function \(f : X \rightarrow Y \) is called e-open if the image of every e-open subset is e-open.

Every e-irresolute function is e-continuous but the converse is not true, and e-irresolute and openness are not relate to each other, as shown by the following Example 2 and Example 3.

Example 2. Let \(X = Y = \{x, y, z\}, \tau = \emptyset, \{x\}, \{y\}, \{x, y\}, X \) and
\[
\sigma = \emptyset, \{x, y\}, Y. \]
Let \(f : X \rightarrow Y \) be the identity function.
Since \(\tau(x) = \{\{x\}, \{x, y\}, X\}, \tau(y) = \{\{y\}, \{x, y\}, X\} \) and \(\tau(z) = \{X\} \), then \(c_\delta\{x, y\} = \{X\} \) and \(i_\delta\{x, y\} = \emptyset \). Thus we have \(c_\delta\{x, y\} \cup i_\delta\{x, y\} = \{X\} \cup \emptyset = \{X\} \). Therefore for each open set \(\{x, y\} \in \sigma \), then \(f^{-1}(\{x, y\}) = \{x, y\} \subset i_\delta f^{-1}(\{x, y\}) \cup i_\delta f^{-1}(\{x, y\}) = \{X\} \) and \(f^{-1}(\{x, y\}) \) is e-open in \(X \). Hence \(f \) is e-continuous.

Since \(\sigma(x) = \sigma(y) = \{\{x, y\}, Y\} \) and \(\sigma(z) = \{Y\} \), then \(c_\delta\{x, z\} = \{Y\} \) and \(i_\delta\{x, z\} = \emptyset \). Therefore \(\{x, z\} \subset i_\delta c_\delta\{x, z\} \cup i_\delta c_\delta\{x, z\} = \{Y\} \) and \(\{x, z\} \) is e-open set in \(Y \). But \(f^{-1}(\{x, z\}) = \{x, z\} \not\subset c_\delta f^{-1}(\{x, z\}) \) and \(i_\delta f^{-1}(\{x, z\}) = \emptyset \cup \{x\} = \{x\} \) is not e-open in \(X \). Hence \(f \) is not e-irresolute.

Example 3. Let \(X = Y = \{x, y, z\}, \tau = \emptyset, \{x\}, \{x, z\}, X \) and
\[
\sigma = \emptyset, \{x\}, \{y\}, \{x, y\}, \{y, z\}, Y. \]
Let \(f : X \rightarrow Y \) be the identity function.
Since \(\tau(x) = \{\{x\}, \{x, z\}, X\}, \tau(y) = \{\{y\}, \{x, y\}, X\} \) and \(\tau(z) = \{x, z\}, X \), then \(c_\delta\{x, y\} = c_\delta\{y, z\} = c_\delta\{z\} = c_\delta\{y\} = \{X\} \) and \(i_\delta\{x, y\} = i_\delta\{y, z\} = i_\delta\{z\} = i_\delta\{y\} = \emptyset \). Thus we have \(c_\delta\{x, y\} \cup i_\delta\{x, y\} = \{X\} \cup \emptyset = \{X\} \), \(c_\delta\{y, z\} \cup i_\delta\{y, z\} = \{X\} \cup \emptyset = \{X\} \), \(c_\delta\{z\} \cup i_\delta\{z\} = \{X\} \cup \emptyset = \{X\} \). Hence \(EO(X) = \tau \cup \{\{x, y\}, \{y, z\}, \{y\}\} \).

Since \(\sigma(x) = \{\{x\}, \{x, y\}, Y\}, \sigma(y) = \{\{y\}, \{x, y\}, \{y, z\}, Y\} \) and \(\sigma(z) = \{\{y, z\}, Y\} \) then \(c_\delta\{x, z\} = \{Y\} \), \(c_\delta\{z\} = \{y, z\} \) and \(i_\delta\{x, z\} = i_\delta\{z\} = \emptyset \). Thus we have \(c_\delta\{x, z\} \cup i_\delta\{x, z\} = \{Y\} \cup \emptyset = \{Y\} \) and \(c_\delta\{z\} \cup i_\delta\{z\} = \{y, z\} \cup \emptyset = \{y, z\} \). Hence \(\{x, z\}, \{y, z\} \in EO(Y) \).
Because \(f(\{x\}) = \{x\} \in \sigma, f(\{y\}) = \{y\} \in \sigma, f(\{z\}) = \{z\} \in EO(Y), \)
\(f(\{x, y\}) = \{x, y\} \in \sigma, f(\{y, z\}) = \{y, z\} \in \sigma \) and \(f(\{x, z\}) = \{x, z\} \in EO(Y). \) Thus \(f \) is \(e \)-irresolute.

Let \(\{x, z\} \in \tau, \) then \(f(\{x, z\}) = \{x, z\} \notin \sigma. \) Hence \(f \) is not open.

From Example 1, Example 2, Example 3, Example 4.4 [3] and Example 4.5 [3], we have the following relationships:

\[\begin{align*}
\delta\text{-almost continuity} & \quad \leftrightarrow \quad \delta\text{-semi-continuity} \\
\delta\text{-semi-continuity} & \quad \leftrightarrow \quad e\text{-continuity} \\
e\text{-continuity} & \quad \leftrightarrow \quad e\text{-irresolute} \\
e\text{-irresolute} & \quad \leftrightarrow \quad e\text{-open}
\end{align*} \]

Theorem 10. Let \(f : X \to Y \) be \(e \)-open and \(g : Y \to Z \) be a function. If \(g \circ f : X \to Z \) is \(e \)-continuous, then \(g \) is \(e \)-continuous.

Proof. Suppose \(B \) is open in \(Z. \) Since \(g \circ f \) is \(e \)-continuous, then \((g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B)) \) is \(e \)-open. Since \(f \) is \(e \)-open, then \(f(f^{-1}(g^{-1}(B))) = g^{-1}(B) \) is \(e \)-open. Hence \(g \) is \(e \)-continuous. \(\blacksquare \)

Theorem 11. Let \(f : X \to Y \) be \(e \)-open and \(g : Y \to Z \) be a function. If \(g \circ f : X \to Z \) is \(e \)-continuous, then \(g \) is \(e \)-continuous.

Proof. Suppose \(y \in Y \) and \(V \) is an open neighborhood of \(g(y). \) Then there exists a \(x \in X \) such that \(f(x) = y. \) Since \(g \circ f \) is \(e \)-continuous, then there exists a \(U \in EO(X) \) containing \(x \) such that \(g(f(U)) = (g \circ f)(U) \subset V. \) Since \(f \) is \(e \)-open, then \(f(U) \in EO(Y). \) Hence \(g \) is \(e \)-continuous. \(\blacksquare \)

Let \(\{(X_\alpha, \tau_\alpha) : \alpha \in \Lambda\} \) and \(\{(Y_\alpha, \sigma_\alpha) : \alpha \in \Lambda\} \) be two families of pairwise disjoint spaces, i.e., \(X_\alpha \cap X_\alpha' = Y_\alpha \cap Y_\alpha' = \emptyset \) for \(\alpha \neq \alpha' \) and let \(f_\alpha : (X_\alpha, \tau_\alpha) \to (Y_\alpha, \sigma_\alpha) \) be a function for each \(\alpha \in \Lambda. \)

Denote the product space \(\prod_{\alpha \in \Lambda} \{(X_\alpha, \tau_\alpha) : \alpha \in \Lambda\} \) and \(\prod_{\alpha \in \Lambda} \{(X_\alpha, \tau_\alpha) : \alpha \in \Lambda\} \) by \(\prod X_\alpha \) and \(\prod f_\alpha : \prod X_\alpha \to \prod Y_\alpha \) denote the product function defined by \(f(\{x_\alpha\}) = \{f(x_\alpha)\} \) for each \(\{x_\alpha\} \in \prod X_\alpha. \) Let \(P_\alpha : \prod X_\alpha \to X_\alpha \) and \(Q_\alpha : \prod Y_\alpha \to Y_\alpha \) be the natural projections.

Theorem 12. The product function \(\prod f_\alpha : \prod X_\alpha \to \prod Y_\alpha \) is \(e \)-continuous if and only if \(f_\alpha : X_\alpha \to Y_\alpha \) is \(e \)-continuous for every \(\alpha \in \Lambda. \)
Proof. Denote $X = \prod_{\alpha \in \Lambda} X_\alpha, Y = \prod_{\alpha \in \Lambda} Y_\alpha$ and $f = \prod_{\alpha \in \Lambda} f_\alpha$.

Necessity. Suppose f is e-continuous and Q_α is continuous for any $\alpha \in \Lambda$. By Theorem 10, then $f_\alpha \circ P_\alpha = Q_\alpha \circ f$ is e-continuous. Since P_α is continuous surjection, then f_α is e-continuous with Theorem 11.

Sufficiency. Let $x = \{x_\alpha\} \in X$ and V be an open subset of Y containing $f(x)$, then there exists a basic open set $\prod_{\alpha \in \Lambda} W_\alpha$ such that $f(x) \in \prod_{\alpha \in \Lambda} W_\alpha \subset V$ and $\prod_{\alpha \in \Lambda} W_\alpha = \prod_{i=1}^n W_{\alpha_i} \times \prod_{\alpha \notin \alpha_i} Y_\alpha$ where W_α be an open subset of Y for each $\alpha \in \{\alpha_i : 1 < i < n\}$. Since f_α is e-continuous, then there exists an e-open set U_{α_i} such that $f_\alpha(U_{\alpha_i}) \in W_\alpha$ for each $x_{\alpha_i} \in X_{\alpha_i}$ and for each W_α be an open subset of Y_α containing $f(x_{\alpha_i})$. Put $U = \prod_{i \in \mathbb{N}} U_{\alpha_i} \times \prod_{\alpha \notin \alpha_i} X_\alpha$, then U is e-open in X and $f(x) \in f_\alpha(\{x_\alpha\}) \in f(U) \subset \prod_{i \in \mathbb{N}} f_\alpha(U_{\alpha_i}) \times \prod_{\alpha \notin \alpha_i} Y_\alpha$. Set $y = y \in \prod_{i \in \mathbb{N}} f_\alpha(U_{\alpha_i}) \times \prod_{\alpha \notin \alpha_i} Y_\alpha$, then there exists a $x^* \in U_{\alpha_i}$ such that $y_{\alpha_i} = f_\alpha(x^*_{\alpha_i})$ for every $\alpha \in \{\alpha_i : 1 < i < n\}$. If $\alpha \neq \alpha_i$, then there exists $y_\alpha \in Y_\alpha = f(X_\alpha)$ and $x^* \in X_\alpha$ such that $y_\alpha = f_\alpha(x^*_{\alpha_i})$. Thus, we have $\{y_\alpha\} = y \in \prod_{i \in \mathbb{N}} W_{\alpha_i} \times \prod_{\alpha \notin \alpha_i} Y_\alpha \subset f(U) \times Y \subset f(U) \subset V$.

Hence f is e-continuous.

Denote the topological sum $(\bigcup_{\alpha \in \Lambda} X_\alpha, \tau)$ of $\{(X_\alpha, \tau_\alpha) : \alpha \in \Lambda\}$ by $\bigoplus_{\alpha \in \Lambda} X_\alpha$ and the topological sum $(\bigcup_{\alpha \in \Lambda} Y_\alpha, \sigma)$ of $\{(Y_\alpha, \sigma_\alpha) : \alpha \in \Lambda\}$ by $\bigoplus_{\alpha \in \Lambda} Y_\alpha$, where

$$
\tau = \{A \subset X : A \cap X_\alpha \in \tau_\alpha \text{ for every } \alpha \in \Lambda\},
$$

and

$$
\sigma = \{B \subset Y : B \cap Y_\alpha \in \sigma_\alpha \text{ for every } \alpha \in \Lambda\},
$$

A function $\bigoplus_{\alpha \in \Lambda} f_\alpha : \bigoplus_{\alpha \in \Lambda} X_\alpha \to \bigoplus_{\alpha \in \Lambda} Y_\alpha$, called a sum function of $\{f_\alpha : \alpha \in \Lambda\}$, is defined as follows: for every $x \in \bigcup_{\alpha \in \Lambda} X_\alpha$,

$$(\bigoplus_{\alpha \in \Lambda} f_\alpha)(x) = f_\beta(x) \text{ if there exists unique } \beta \in \Lambda \text{ such that } x \in X_\beta.$$

Theorem 13. The sum function $\bigoplus_{\alpha \in \Lambda} f_\alpha : \bigoplus_{\alpha \in \Lambda} X_\alpha \to \bigoplus_{\alpha \in \Lambda} Y_\alpha$ is e-continuous if and only if $f_\alpha : (X_\alpha, \tau_\alpha) \to (Y_\alpha, \sigma_\alpha)$ is e-continuous for every $\alpha \in \Lambda$.

Proof. Denote $f = \bigoplus_{\alpha \in \Lambda} f_\alpha, X = \bigoplus_{\alpha \in \Lambda} X_\alpha, Y = \bigoplus_{\alpha \in \Lambda} Y_\alpha$.
Necessity. Suppose \(f \) is \(e \)-continuous. Then \(f|_{X_\alpha} = f_\alpha \) is \(e \)-continuous with Theorem 5.

Sufficiency. Let \(V \) be an open subset of \(Y \). Then \(V \cap Y_\alpha \in \sigma_\alpha \) for every \(\alpha \in \bigwedge \). Let \(x \in f^{-1}(V) \cap X_\alpha \), then \(f(x) \in V \) and \(f(x) \in Y_\alpha \). This implies that \(f(x) \in f_\alpha(x) \). Thus, we have \(f_\alpha(x) \in V \) and \(f_\alpha(x) \in V \cap Y_\alpha \). Hence \(x \in f_\alpha^{-1}(V \cap Y_\alpha) \). Conversely, \(f_\alpha^{-1}(V \cap Y_\alpha) \subset f^{-1}(V) \cap X_\alpha \). Thus, we obtain \(f^{-1}(V) \cap X_\alpha = f_\alpha^{-1}(V \cap Y_\alpha) \) for every \(\alpha \in \bigwedge \). Since \(f_\alpha \) is \(e \)-continuous, then \(f^{-1}(V) \cap X_\alpha \) is \(e \)-open in \(X_\alpha \). Thus, we have \(f^{-1}(V) \) is \(e \)-open in \(X \). Hence \(f \) is \(e \)-continuous.

\[\blacksquare \]

5. Separation axioms and graph properties

Definition 12. A space \(X \) is called

(a) Urysohn [8] if for each pair of distinct points \(x \) and \(y \) in \(X \), there exist open subsets \(U \) and \(V \) such that \(x \in U \), \(y \in V \), and \(cU \cap cV = \emptyset \).

(b) \(e \)-T1 if for each pair of distinct points \(x \) and \(y \) in \(X \), there exist \(e \)-open subsets \(U \) and \(V \) containing \(x \) and \(y \), respectively, such that \(y \notin U \) and \(x \notin V \).

(c) \(e \)-T2 if for each pair of distinct points \(x \) and \(y \) in \(X \), there exist \(e \)-open subsets \(U \) and \(V \) such that \(x \in U \), \(y \in V \), and \(U \cap V = \emptyset \).

Theorem 14. Let \(f : X \rightarrow Y \) be a \(e \)-continuous injection. Then the following hold.

(a) If \(Y \) is a \(T_1 \)-space, then \(X \) is \(e \)-T1.

(b) If \(Y \) is a \(T_2 \)-space, then \(X \) is \(e \)-T2.

(c) If \(Y \) is Urysohn, then \(X \) is \(e \)-T2.

Proof. (a) Let \(x \) and \(y \) be any distinct points in \(X \). Since \(Y \) is a \(T_1 \)-space, then there exist open subsets \(U \) and \(V \) of \(Y \) such that \(f(x) \in U \), \(f(y) \notin U \) and \(f(x) \in V \), \(f(y) \notin V \). Since \(f \) is \(e \)-continuous, then \(f^{-1}(U) \) and \(f^{-1}(V) \) are \(e \)-open in \(X \) such that \(x \in f^{-1}(U) \), \(y \notin f^{-1}(U) \) and \(x \notin f^{-1}(V) \), \(y \in f^{-1}(V) \). Hence \(X \) is \(e \)-T1.

(b) Let \(x \) and \(y \) be any distinct points in \(X \). Since \(Y \) is a \(T_2 \)-space, then there exist open subsets \(U \) and \(V \) containing \(f(x) \) and \(f(y) \) in \(Y \), respectively, such that \(U \cap V = \emptyset \). Since \(f \) is \(e \)-continuous, then there exist \(e \)-open subsets \(A \) and \(B \) containing \(x \) and \(y \), respectively, such that \(f(A) \subset U \) and \(f(B) \subset V \). This implies that \(A \cap B = \emptyset \). Hence \(X \) is \(e \)-T2.

(c) Let \(x \) and \(y \) be any distinct points in \(X \). Since \(Y \) is Urysohn, then there exist open subsets \(U \) and \(V \) in \(Y \) such that \(f(x) \in U \), \(f(y) \in V \) and \(cU \cap cV = \emptyset \). Since \(f \) is \(e \)-continuous, then there exist \(e \)-open subsets \(A \) and \(B \) containing \(x \) and \(y \), respectively, such that \(f(A) \subset U \subset cU \) and \(f(B) \subset V \subset cV \). This implies that \(A \cap B = \emptyset \). Hence \(X \) is \(e \)-T2.

\[\blacksquare \]
Theorem 15. Let \(f, g : X \to Y \) be two functions. If \(f \) is continuous, \(g \) is \(e \)-continuous and \(Y \) is \(e \)-\(T_2 \), then \(\{ x \in X : f(x) = g(x) \} \) is \(e \)-closed in \(X \).

Proof. Denote \(A = \{ x \in X : f(x) = g(x) \} \). Let \(x \in X - A \). Then \(f(x) \neq g(x) \). Since \(Y \) is an \(e \)-\(T_2 \) space, then there exist \(e \)-open subsets \(U \) and \(V \) containing \(f(x) \) and \(g(x) \) in \(Y \), respectively, such that \(U \cap V = \emptyset \). Since \(f \) is continuous and \(g \) is \(e \)-continuous, then \(f^{-1}(U) \) is \(e \)-open and \(g^{-1}(V) \) is \(e \)-open in \(X \). This implies that \(x \in f^{-1}(U) \) and \(x \in g^{-1}(V) \). Put \(W = f^{-1}(U) \cap g^{-1}(V) \), then \(W \) is \(e \)-open in \(X \) with Proposition 2. Thus, we have \(f(W) \cap g(W) \subset U \cap V = \emptyset \). This implies that \(W \cap A = \emptyset \) and \(x \in W \subset X - A \). Hence \(X - A \) is \(e \)-open and \(A \) is \(e \)-closed in \(X \).

Definition 13. A space \(X \) is called \(e \)-regular if for each \(e \)-closed subset \(F \) and each point \(x \notin F \), there exist disjoint open subsets \(U \) and \(V \) such that \(x \in U \) and \(F \subset V \).

Theorem 16. Let a function \(f : X \to Y \) be a \(e \)-irresolute surjection. If \(X \) is \(e \)-regular, then \(Y \) is \(e \)-regular.

Proof. Suppose \(y \in Y \) and \(F \) is \(e \)-closed in \(Y \) such that \(y \notin F \). Since \(f \) is \(e \)-irresolute surjection, then there exists a \(x \in X \) such that \(y = f(x) \) and \(f^{-1}(F) \) is \(e \)-closed in \(X \) such that \(x \notin f^{-1}(F) \). Since \(X \) is \(e \)-regular, then there exist disjoint open subsets \(U \) and \(V \) such that \(x \in U \) and \(f^{-1}(F) \subset V \). This implies \(y = f(x) \in f(U) \subset Y \setminus f(X - U) \). By Lemma 2, \(F \subset Y \setminus f(X - U) \). Note that \(Y \setminus f(X - U) \) and \(Y \setminus f(X - V) \) are disjoint open subsets of \(Y \). Hence \(Y \) is \(e \)-regular.

Definition 14. A space \(X \) is called \(e \)-normal if for every pair of disjoint \(e \)-closed subsets \(A \) and \(B \), there exist disjoint open subsets \(U \) and \(V \) such that \(A \subset U \) and \(B \subset V \).

Theorem 17. Let a function \(f : X \to Y \) be \(e \)-irresolute. If \(X \) is \(e \)-normal, then \(Y \) is also \(e \)-normal.

Proof. Let \(A \) and \(B \) be disjoint \(e \)-closed subsets of \(Y \). Since \(f \) is \(e \)-irresolute, then \(f^{-1}(A) \) and \(f^{-1}(B) \) are disjoint \(e \)-closed subsets of \(X \). Since \(X \) is \(e \)-normal, then there exist disjoint open subsets \(U \) and \(V \) in \(X \) such that \(f^{-1}(A) \subset U \) and \(f^{-1}(B) \subset V \). By Lemma 2, \(A \subset Y \setminus f(X - U) \) and \(B \subset Y \setminus f(X - V) \). Note that \(Y \setminus f(X - U) \) and \(Y \setminus f(X - V) \) are disjoint open subsets of \(Y \). Hence \(Y \) is \(e \)-normal.

Lemma 4. A space \(X \) is \(e \)-normal if and only if for each \(e \)-closed subset \(F \) and \(e \)-open subset \(U \) containing \(F \), there exists an open set \(V \) such that \(F \subset V \subset c_eV \subset U \).
Then we obtain \(U \) is an -normal space, then there exist disjoint open subsets \(U_1, V_1 \) such that \(F \subset U_1 \) and \(X - U \subset V_1 \). This implies that \(X - V_1 \subset U \). Since \(U_1 \cap V_1 = \emptyset \), then we obtain \(c_e U_1 \subset X - V_1 \). Set \(V = U_1 \), then \(c_e U_1 \subset X - V_1 \subset U \). Therefore, \(F \subset V \subset c_e V \subset X - V_1 \subset U \).

Sufficiency. The proof is obvious.

Below we give Urysohn’s Lemma on -normal spaces.

Theorem 18. A space \(X \) is -normal if and only if for each pair of disjoint e-closed subsets \(A \) and \(B \) of \(X \), there exists a continuous map \(f : X \to [0, 1] \) such that \(f(A) = \{0\} \) and \(f(B) = \{1\} \).

Proof. **Sufficiency.** Suppose that for each pair of disjoint e-closed subsets \(A \) and \(B \) of \(X \), there exists a continuous map \(f : X \to [0, 1] \) such that \(f(A) = \{0\} \) and \(f(B) = \{1\} \). Put \(U = f^{-1}([^0, 1/2)), V = f^{-1}((1/2, 1]) \), then \(U \) and \(V \) are disjoint open subsets of \(X \) such that \(A \subset U \) and \(B \subset V \). Hence \(X \) is e-normal.

Necessity. Suppose \(X \) is e-normal. For each pair of disjoint e-closed subsets \(A \) and \(B \) of \(X \), \(A \subset X - B \), where \(A \) is e-closed in \(X \) and \(X - B \) is e-open in \(X \), by Lemma 4, there exists an open subset \(U_{1/2} \) of \(X \) such that

\[
A \subset U_{1/2} \subset c_e U_{1/2} \subset X - B.
\]

Since \(A \subset U_{1/2} \), \(A \) is e-closed in \(X \) and \(U_{1/2} \) is e-open in \(X \), then there exists an open subset \(U_{1/4} \) of \(X \) such that \(A \subset U_{1/4} \subset c_e U_{1/4} \subset U_{1/2} \) by Lemma 4. Since \(c_e U_{1/2} \subset X - B \), \(c_e U_{1/2} \) is e-closed in \(X \) and \(X - B \) is e-open in \(X \), then there exists an open subset \(U_{3/4} \) of \(X \) such that \(c_e U_{1/2} \subset U_{3/4} \subset c_e U_{3/4} \subset X - B \) by Lemma 4. Thus, there exist two open subsets \(U_{1/2} \) and \(U_{3/4} \) of \(X \) such that

\[
A \subset U_{1/4} \subset c_e U_{1/4} \subset U_{1/2} \subset c_e U_{1/2} \subset U_{3/4} \subset c_e U_{3/4} \subset X - B.
\]

We get a family \(\{U_{m/2^n} : 1 \leq m < 2^n, n \in N\} \) of open subsets of \(X \), denotes \(\{U_{m/2^n} : 1 \leq m < 2^n, n \in N\} \) by \(\{U_\alpha : \alpha \in \Gamma\} \). \(\{U_\alpha : \alpha \in \Gamma\} \) satisfies the following condition:

(a) \(A \subset U_\alpha \subset c_e U_\alpha \subset X - B \),
(b) if \(\alpha < \alpha' \), then \(c_e U_\alpha \subset U_{\alpha'} \).

We define \(f : X \to [0, 1] \) as follows:

\[
f(x) = \begin{cases}
\inf\{\alpha \in \Gamma : x \in U_\alpha\}, & \text{if } x \in U_\alpha \text{ for some } \alpha \in \Gamma, \\
1, & \text{if } x \not\in U_\alpha \text{ for any } \alpha \in \Gamma.
\end{cases}
\]

For each \(x \in A \), \(x \in U_\alpha \) for any \(\alpha \in \Gamma \) by (1), so \(f(x) = \inf\{\alpha \in \Gamma : x \in U_\alpha\} = \inf\Gamma = 0 \). Thus, \(f(A) = \{0\} \).
For each $x \in B$, $x \not\in X - B$ implies $x \not\in U_\alpha$ for any $\alpha \in \Gamma$ by (1), so $f(x) = 1$. Thus, $f(B) = \{1\}$.

We have to show f is continuous.

For $x \in X$ and $\alpha \in \Gamma$, we have the following Claim:

Claim 1: if $f(x) < \alpha$, then $x \in U_\alpha$.

Suppose $f(x) < \alpha$, then $\inf\{\alpha \in \Gamma : x \in U_\alpha\} < \alpha$, so there exists $\alpha_1 \in \{\alpha \in \Gamma : x \in U_\alpha\}$ such that $\alpha_1 < \alpha$. By (2), $c_eU_{\alpha_1} \subset U_\alpha$. Notice that $x \in U_{\alpha_1}$. Hence $x \in U_\alpha$.

Claim 2: if $f(x) > \alpha$, then $x \not\in c_eU_\alpha$.

Suppose $f(x) > \alpha$, then there exists $\alpha_1 \in \Gamma$ such that $\alpha < \alpha_1 = f(x)$. Notice that $\alpha_1 \in \{\alpha \in \Gamma : x \in U_\alpha\}$ implies $\alpha_1 = \inf\{\alpha \in \Gamma : x \in U_\alpha\} = f(x)$.

Thus, $\alpha_1 \not\in \{\alpha \in \Gamma : x \in U_\alpha\}$. So $x \not\in U_{\alpha_1}$. By (2), $c_eU_{\alpha_1} \subset U_\alpha$. Hence $x \not\in c_eU_\alpha$.

Claim 3: if $x \not\in c_eU_\alpha$, then $f(x) \geq \alpha$.

Suppose $x \not\in c_eU_\alpha$, we claim that $\alpha < \beta$ for any $\beta \in \{\alpha \in \Gamma : x \in U_\alpha\}$. Otherwise, there exists $\beta \in \{\alpha \in \Gamma : x \in U_\alpha\}$ such that $\alpha \geq \beta$. $x \not\in c_eU_\alpha$ implies $\alpha \not\in \{\alpha \in \Gamma : x \in U_\alpha\}$. So $\alpha \neq \beta$. Thus $\alpha > \beta$. By (2), $c_eU_{\beta} \subset U_\alpha$. So $x \not\in \beta$, contradiction. Therefore $\alpha < \beta$ for any $\beta \in \{\alpha \in \Gamma : x \in U_\alpha\}$. Hence $\alpha \leq \inf\{\alpha \in \Gamma : x \in U_\alpha\} = f(x)$.

For $x_0 \in X$, if $f(x_0) \in (0, 1)$, suppose V is an open neighborhood of $f(x_0)$ in $[0, 1]$, then there exists $\epsilon > 0$ such that $(f(x_0) - \epsilon, f(x_0) + \epsilon) \subset V \cap (0, 1)$. Pick $\alpha', \alpha'' \in \Gamma$ such that

$$0 < f(x_0) - \epsilon < \alpha' < f(x_0) < \alpha'' < f(x_0) + \epsilon < 1.$$

By Claim 1 and Claim 2, $x_0 \in U_{\alpha''}$, $x_0 \not\in c_eU_{\alpha'}$. Put $U = U_{\alpha''} - c_eU_{\alpha'}$, then U is an open neighborhood of x_0 in X.

We will prove that $f(U) \subset (f(x_0) - \epsilon, f(x_0) + \epsilon)$. if $y \in f(U)$, then $y = f(x)$ for some $x \in U$. $x \in U$ implies that $x \in U_{\alpha''}$ and $x \not\in c_eU_{\alpha'}$. Since $x \in U_{\alpha''}$, then $\alpha'' \in \{\alpha \in \Gamma : x \in U_\alpha\}$. Thus, $\alpha'' = \inf\{\alpha \in \Gamma : x \in U_\alpha\} = f(x)$. Notice that $\alpha'' < f(x_0) + \epsilon$. Therefore $f(x) < f(x_0) + \epsilon$. Since $x \not\in c_eU_{\alpha'}$, then $f(x) \geq \alpha'$ by Claim 3. Notice that $f(x_0) - \epsilon < \alpha'$. Therefore $f(x) > f(x_0) - \epsilon$. Hence, $f(U) \subset (f(x_0) - \epsilon, f(x_0) + \epsilon)$.

Therefore, $f(U) \subset V$. This implies f is continuous at x_0. If $f(x_0) = 0$, or 1, the proof that f is continuous at x_0 is similar.

Theorem 19. Let $f : X \rightarrow Y$ be a function and $G : X \rightarrow X \times Y$ be the graph function of f, defined by $G(x) = (x, f(x))$ for each $x \in X$. Then f is e-continuous if and only if G is e-continuous.

Proof. Necessity. Let $x \in X$ and V be an open subset in $X \times Y$ containing $G(x)$. Then there exist open subsets $U_1 \subset X$ and $W \subset Y$
such that \(G(x) = (x, f(x)) \subset U_1 \times W \subset V \). Since \(f \) is \(e \)-continuous, then there exists a \(U_2 \in EO(X) \) such that \(f(U_2) \subset W \). Set \(U = U_1 \cap U_2 \), then \(U \in EO(X) \) with Proposition 2. Thus, we have \(G(U) \subset V \). Hence \(G \) is \(e \)-continuous.

Sufficiency. Let \(x \in X \) and \(V \) be an open subset of \(Y \) containing \(f(x) \). Then \(X \times V \) is an open subset containing \(G(x) \). Since \(G \) is \(e \)-continuous, then there exists \(U \in EO(X) \) such that \(G(U) \subset X \times V \). Thus, we have \(f(U) \subset V \). Hence \(f \) is \(e \)-continuous.

\[\text{Definition 15. A graph } G(f) \text{ of a function } f : X \to Y \text{ is called strongly } e \text{-closed if for each } (x, y) \in (X \times Y) \setminus G(f), \text{ there exists a } U \in EO(X) \text{ containing } x \text{ and an open subset } V \text{ of } Y \text{ containing } y \text{ such that } (U \times V) \cap G(f) = \emptyset. \]

\[\text{Theorem 20. Let } f : X \to Y \text{ be } e \text{-continuous and } Y \text{ be } e-T_2. \text{ Then } G(f) \text{ is } e \text{-strongly closed.} \]

\[\text{Proof. Let } (x, y) \in (X \times Y) \setminus G(f). \text{ Then } f(x) \neq y. \text{ Since } Y \text{ is } e-T_2, \text{ then there exist disjoint } e \text{-open subsets } V \text{ and } W \text{ of } Y \text{ such that } f(x) \in V \text{ and } y \in W. \text{ Since } f \text{ is } e \text{-continuous, then there exists a } U \in EO(X) \text{ such that } f(U) \subset V. \text{ Thus, we have } f(U) \cap (W) = \emptyset. \text{ Hence } (U \times W) \cap G(f) = \emptyset \text{ and } G(f) \text{ is strongly } e \text{-closed.} \]

\[\text{Theorem 21. Let } f : X \to Y \text{ be a } e \text{-continuous and injective. If } G(f) \text{ is strongly } e \text{-closed, then } X \text{ is } e-T_2. \]

\[\text{Proof. Let } x, y \in X \text{ such that } x \neq y. \text{ Since } f \text{ is injective, then } f(x) \neq f(y) \text{ and } (x, f(y)) \notin G(f). \text{ Since } G(f) \text{ is strongly } e \text{-closed, there exists a } U \in EO(X) \text{ and an open subset } W \text{ of } Y \text{ such that } (x, f(y)) \in U \times W \text{ and } (U \times W) \cap G(f) = \emptyset. \text{ Thus, we have } f(U) \cap W = \emptyset. \text{ Since } f \text{ is } e \text{-continuous, then there exists a } y \in V \in EO(X) \text{ such that } f(V) \subset W. \text{ This implies that } f(U) \cap f(V) = \emptyset. \text{ Hence } U \cap V = \emptyset \text{ and } X \text{ is } e-T_2. \]

6. \(e \)-connectedness and covering properties

\[\text{Definition 16. A space } X \text{ is called } e \text{-connected if } X \text{ is not the union of two disjoint nonempty } e \text{-open subsets.} \]

\[\text{Theorem 22. Let } f : X \to Y \text{ be } e \text{-continuous. If } X \text{ is } e \text{-connected, then } Y \text{ is connected.} \]

\[\text{Proof. Suppose } Y \text{ is not a connected space. Then there exist nonempty disjoint open subsets } A \text{ and } B \text{ such that } Y = A \cup B. \text{ Since } f \text{ is } e \text{-continuous, then } f^{-1}(A) \text{ and } f^{-1}(B) \text{ are } e \text{-open subsets of } X. \text{ Thus, we obtain } f^{-1}(A) \]
and \(f^{-1}(B) \) are nonempty disjoint subsets and \(X = f^{-1}(A) \cup f^{-1}(B) \). This is contrary to the hypothesis that \(X \) is a \(e \)-connected space. Hence \(Y \) is connected.

Corollary 1. Let \(f : X \to Y \) be \(e \)-irresolute. If \(X \) is \(e \)-connected, then \(Y \) is \(e \)-connected.

Definition 17. A space \(X \) is called \(e \)-Lindelöf (resp. \(e \)-compact) if every \(e \)-open cover of \(X \) has a countable (resp. finite) subcover.

Theorem 23. Let \(f : X \to Y \) be \(e \)-continuous. If \(X \) is \(e \)-Lindelöf, then \(Y \) is Lindelöf.

Proof. Let \(\{ U_\alpha : \alpha \in \Lambda \} \) is an open cover of \(Y \). Since \(f \) is an \(e \)-continuous function, then \(f^{-1}(\{ U_\alpha : \alpha \in \Lambda \}) \) is an \(e \)-open cover of \(X \). Since \(X \) is \(e \)-Lindelöf, then there exists a countable subcover \(f^{-1}(\{ U_{\alpha i} : U_{\alpha i} \in \{ U_\alpha \}, 1 < i < \infty, \alpha \in \Lambda \}) \) in \(X \). Thus, we have \(\{ U_{\alpha i} : U_{\alpha i} \in \{ U_\alpha \}, 1 < i < \infty, \alpha \in \Lambda \} \) is a countable subcover of \(Y \). Hence \(Y \) is Lindelöf.

Similarly, we can prove the following Theorem 24.

Theorem 24. Let \(f : X \to Y \) be \(e \)-continuous. If \(X \) is \(e \)-compact, then \(Y \) is compact.

Acknowledgement. This paper is supported by the Innovation Project of Guangxi University for Nationalities (No. gxun-chx2011081).

References

Tusheng Xie
College of Mathematics and Information Science
Guangxi University
Nanning, Guangxi 530004, P.R. China
e-mail: tushengxie@126.com

Haining Li
College of Mathematics and Computer Science
Guangxi University for Nationalities
Nanning, Guangxi 530006, P.R. China
e-mail: hning100@126.com

Received on 07.11.2011 and, in revised form, on 23.03.2012.