N. Rajesh and V. Vijayabharathi

ON ALMOST \((\gamma,\gamma')-(\beta,\beta')\)-s-CONTINUOUS FUNCTIONS

Abstract. The aim of this paper is to introduce and study a new class of functions called almost \((\gamma,\gamma')-(\beta,\beta')\)-s-continuous functions in topological spaces by using \((\gamma,\gamma')\)-semiopen sets.

Key words: topological spaces, \((\gamma,\gamma')\)-open set, \((\gamma,\gamma')\)-semiopen set.

AMS Mathematics Subject Classification: 54A40.

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real Analysis concerns the various modified forms of continuity, seperation axioms etc. by utilizing generalized open sets. Kasahara [3] defined the concept of an operation on topological spaces. Umehara et. al. [5] introduced the notion of \(\tau_{(\gamma,\gamma')}\) which is the collection of all \((\gamma,\gamma')\)-open sets in a topological space \((X,\tau)\). In [1] the authors, introduced the notion of \((\gamma,\gamma')\)-semiopeness and investigated its fundamental properties. The aim of this paper is to introduce and study a new class of functions called almost \((\gamma,\gamma')-(\beta,\beta')\)-s-continuous functions in topological spaces by using \((\gamma,\gamma')\)-semiopen sets.

2. Preliminaries

Definition 1 ([3]). Let \((X,\tau)\) be a topological space. An operation \(\gamma\) on the topology \(\tau\) is a function from \(\tau\) in to power set \(\mathcal{P}(X)\) of \(X\) such that \(V \subset V^\gamma\) for each \(V \in \tau\), where \(V^\gamma\) denotes the value of \(\gamma\) at \(V\). It is denoted by \(\gamma : \tau \to \mathcal{P}(X)\).

Definition 2 ([5]). A subset \(A\) of a topological space \((X,\tau)\) is said to be a \((\gamma,\gamma')\)-open set if for each \(x \in A\) there exist open neighborhoods \(U\) and \(V\) of \(x\) such that \(U^\gamma \cup V^\gamma \subset A\). The complement of a \((\gamma,\gamma')\)-open set is called a \((\gamma,\gamma')\)-closed set. Also \(\tau_{(\gamma,\gamma')}\) denotes set of all \((\gamma,\gamma')\)-open sets in \((X,\tau)\).
Definition 3 ([5]). Let A be a subset of a topological space (X, τ). A point $x \in A$ is said to be the (γ, γ')-interior point of A if there exist open neighborhoods U and V of x such that $U^\gamma \cup V^{\gamma'} \subset A$ and we denote the set of all such points by $\text{Int}_{(\gamma, \gamma')}(A)$. Thus $\text{Int}_{(\gamma, \gamma')}(A) = \{x \in A : x \in U \in \tau, V \in \tau \text{ and } U^\gamma \cup V^{\gamma'} \subset A\}$. Note that A is (γ, γ')-open if and only if $A = \text{Int}_{(\gamma, \gamma')}(A)$.

A subset $A \subset X$ is called (γ, γ')-closed if and only if $X \setminus A$ is (γ, γ')-open.

Definition 4 ([5]). A point $x \in X$ is called the (γ, γ')-closure point of $A \subset X$, if $(U^\gamma \cup V^{\gamma'}) \cap A \neq \emptyset$ for any open neighborhoods U and V of x. The set of all (γ, γ')-closure points of A is called (γ, γ')-closure of A and is denoted by $\text{Cl}_{(\gamma, \gamma')}(A)$. A subset A of X is called (γ, γ')-closed if $\text{Cl}_{(\gamma, \gamma')}(A) \subset A$.

Definition 5 ([1]). A subset A of a topological space (X, τ) is said to be (γ, γ')-semiopen if there exists a (γ, γ')-open set O such that $O \subset A \subset \text{Cl}_{(\gamma, \gamma')}(O)$. The set of all (γ, γ')-semiopen sets is denoted by $\text{SO}_{(\gamma, \gamma')}(X)$. A is (γ, γ')-semiclosed if and only if $X \setminus A$ is (γ, γ')-semiopen in X.

Definition 6 ([1]). Let A be a subset of a topological space (X, τ) and γ, γ' operators on τ.

1. The intersection of all (γ, γ')-semiclosed sets containing A is called the (γ, γ')-semiclosure of A and is denoted by $s\text{Cl}_{(\gamma, \gamma')}(A)$.

2. The union of all (γ, γ')-semiopen subsets of A is called (γ, γ')-semiinterior of A and is denoted by $s\text{Int}_{(\gamma, \gamma')}(A)$.

Definition 7 ([1]). A point $x \in X$ is said to be (γ, γ')-semi-θ-adherent point of a subset A of X if $s\text{Cl}_{(\gamma, \gamma')}(U) \cap A \neq \emptyset$ for every $U \in \text{SO}_{(\gamma, \gamma')}(X)$. The set of all (γ, γ')-semi-θ-adherent points of A is called the (γ, γ')-semi-θ-closure of A and is denoted by $s_{(\gamma, \gamma')} \text{Cl}_\theta(A)$. A subset A is called (γ, γ')-semi-θ-closed if $s_{(\gamma, \gamma')} \text{Cl}_\theta(A) = A$. A subset A is called (γ, γ')-semi-θ-open if and only if $X \setminus A$ is (γ, γ')-semi-θ-closed.

Definition 8 ([1]). A subset A of a topological space (X, τ) is said to be (γ, γ')-semiregular, if it is both (γ, γ')-semiopen and (γ, γ')-semiclosed. The class of all (γ, γ')-semiregular sets of X is denoted by $\text{SR}_{(\gamma, \gamma')}(A)$.

Definition 9 ([4]). An operation γ on τ is said to be regular if for any open neighborhoods U, V of $x \in X$, there exists an open neighborhood W of x such that $U^\gamma \cap V^\gamma \supset W^\gamma$.

Definition 10 ([4]). An operation γ on τ is said to be open if for every neighborhood U of $x \in X$, there exists a γ-open set B such that $x \in B$ and $U^\gamma \supset B$.

Definition 11 ([2]). A subset A of a topological space (X, τ) is said to be (γ, γ')-s-closed if for every cover $\{V_\alpha : \alpha \in I\}$ of X by (γ, γ')-semiopen sets
of X, there exists a finite subset I_0 of I such that $A \subset \bigcup_{\alpha \in I_0} s\ Cl(\gamma,\gamma')(V_\alpha)$. If $A = X$, the topological space (X, τ) is called a (γ, γ')-s-closed space.

Proposition 1 ([2]). For any space X, the following are equivalent:

1. X is (γ, γ')-s-closed.
2. Every cover of X by (γ, γ')-semiregular sets has a finite subcover.

Definition 12 ([1]). A function $f : (X, \tau) \to (Y, \tau)$ is said to be $((\gamma, \gamma'), (\beta, \beta'))$-semicontinuous if for any (β, β')-open set B in Y, $f^{-1}(B)$ is (γ, γ')-semiregular in X.

Definition 13. An operation $\gamma : \tau \to P(X)$ is said to be γ-open, if V^γ is γ-open for each $V \in \tau$.

Lemma 1 ([1]). Let A be a subset of a space X. Then we have

1. If $A \in SO(\gamma, \gamma')(X)$, then $s\ Cl(\gamma, \gamma')(A) = s(\gamma, \gamma')\ Cl_\theta(A)$.
2. If $A \in SR(\gamma, \gamma')(X)$, then A is (γ, γ')-semi-θ-closed.

Proof. (1) Clearly $s\ Cl(\gamma, \gamma')(A) \subset s(\gamma, \gamma')\ Cl_\theta(A)$. Suppose that $x \notin s\ Cl(\gamma, \gamma')(A)$. Then, for some (γ, γ')-semiregular set U, $A \cap U = \emptyset$ and hence $A \cap s\ Cl(\gamma, \gamma')(U) = \emptyset$, since $A \in SO(\gamma, \gamma')(X)$. This shows that $x \notin s(\gamma, \gamma')\ Cl_\theta(A)$. Therefore $s\ Cl(\gamma, \gamma')(A) = s(\gamma, \gamma')\ Cl_\theta(A)$.

(2) This follows from (1).

Lemma 2 ([1]). Let A be a subset of a topological space (X, τ):

1. If $A \in SO(\gamma, \gamma')(X)$, then $s\ Cl(\gamma, \gamma')(A) \in SR(\gamma, \gamma')(X)$.
2. If A is (γ, γ')-open in X, then $s\ Cl(\gamma, \gamma')(A) = \text{Int}(\gamma, \gamma')(\text{Cl}(\gamma, \gamma')(X))$.

Proof. (1) Since $s\ Cl(\gamma, \gamma')(A)$ is (γ, γ')-semiregular, we show that $s\ Cl(\gamma, \gamma')(A) \in SO(\gamma, \gamma')(X)$. Since $A \in SO(\gamma, \gamma')(X)$, then for (γ, γ')-open set U of X, $U \subset A \subset \text{Cl}(\gamma, \gamma')U$. Therefore we have, $U \subset s\ Cl(\gamma, \gamma')(U) \subset s\ Cl(\gamma, \gamma')(A) \subset s\ Cl(\gamma, \gamma')\text{Cl}(\gamma, \gamma')(U)) = \text{Cl}(\gamma, \gamma')(U)$ or $U \subset s\ Cl(\gamma, \gamma')(A) \subset \text{Cl}(\gamma, \gamma')(U)$ and hence $s\ Cl(\gamma, \gamma')(A) \in SO(\gamma, \gamma')(X)$.

3. Almost (γ, γ')-(β, β')-s-continuous functions

Definition 14. A function $f : (X, \tau) \to (Y, \tau)$ is said to be almost (γ, γ')-(β, β')-s-continuous if for each point $x \in X$ and each $V \in SO(\beta, \beta')(Y)$, there exists a (γ, γ')-open set U containing x such that $f(U) \subseteq s\ Cl(\gamma, \gamma')(V)$.

Example 1. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$. Define the operations $\gamma : \tau \to P(X)$, $\gamma' : \tau \to P(X)$, $\beta : \sigma \to P(X)$ and $\beta' : \sigma \to P(X)$ by

\[
A^\gamma = \begin{cases} A & \text{if } b \notin A, \\ Cl(A) & \text{if } b \in A, \end{cases} \quad A'^\gamma = \begin{cases} Cl(A) & \text{if } b \notin A, \\ A & \text{if } b \in A, \end{cases}
\]
\[A^β = \begin{cases} A & \text{if } a \in A \\ A \cup \{a\} & \text{if } a \notin A \end{cases} \quad \text{and} \quad A'^β = \begin{cases} A & \text{if } c \in A \\ A \cup \{c\} & \text{if } c \notin A \end{cases} \]

Clearly, \(τ_{(γ,γ')} = \{0, X, \{b\}, \{a,b\}, \{a,c\}\} \) and \(SO(β,β')(Y) = \{0, X, \{a,c\}\} \).

Theorem 1. The following statements are equivalent for a function \(f : (X, τ) \to (Y, σ) \):

1. \(f \) is almost \((γ, γ')-(β, β')\)-s-continuous.
2. For each \(x \in X \) and \(V \in SR(β,β')(Y) \), there exists a \((γ, γ')\)-open set \(U \) containing \(x \) such that \(f(U) \subseteq V \).
3. \(f^{-1}(V) \) is \((γ, γ')\)-open as well as \((γ, γ')\)-closed in \(X \) for every \(V \in SR(β,β')(Y) \).
4. \(f^{-1}(V) \subseteq Int(γ,γ')(f^{-1}(sCl(β,β')(V))) \) for every \(V \in SO(β,β')(Y) \).
5. \(Cl(γ,γ')(f^{-1}(sInt(β,β')(V))) \subseteq f^{-1}(V) \) for every \((β, β')\)-seminclosed set \(V \) of \(Y \).
6. \(Cl(γ,γ')(f^{-1}(V)) \subseteq f^{-1}(sCl(β,β')(V)) \) for every \(V \in SO(β,β')(Y) \), where \(γ \) and \(γ' \) are open.

Proof. (1) \(\Rightarrow \) (2): Let \(x \in X \) and \(V \in SR(β,β')(Y) \). There exists a \((γ, γ')\)-open set \(U \) containing \(x \) such that \(f(U) \subseteq sCl(β,β')(V) = V \).

(2) \(\Rightarrow \) (3): Let \(V \in SR(β,β')(Y) \) and \(x \in f^{-1}(V) \). Then \(f(U) \subseteq V \) for some \((γ, γ')\)-open set \(U \) of \(X \) containing \(x \) hence \(x \in U \subseteq f^{-1}(V) \). This shows that \(f^{-1}(V) \) is \((γ, γ')\)-open in \(X \). Since \(Y \setminus V \in SR(β,β')(Y) \), \(f^{-1}(Y \setminus V) \) is also \((γ, γ')\)-open and hence \(f^{-1}(V) \) is \((γ, γ')\)-clopen in \(X \).

(3) \(\Rightarrow \) (4): Let \(V \in SO(β,β')(Y) \). Then by Lemma 2, \(V \subseteq sCl(β,β')(V) \) and \(sCl(β,β')(V) \in SR(β,β')(Y) \). By (3), we have \(f^{-1}(V) \subseteq f^{-1}(sCl(β,β')(V)) \) and \(f^{-1}(sCl(β,β')(V)) \) is \((γ, γ')\)-open in \(X \). Therefore, we obtain \(f^{-1}(V) \subseteq Int(γ,γ')(f^{-1}(sCl(β,β')(V))) \).

(4) \(\Rightarrow \) (5): Let \(V \) be a \((β, β')\)-seminclosed subset of \(Y \). By (4), we have \(f^{-1}(Y \setminus V) \subseteq Int(γ,γ')(f^{-1}(sCl(β,β')(Y \setminus V))) = Int(γ,γ')(f^{-1}(Y \setminus sInt(β,β')(V))) = X \setminus Cl(γ,γ')(f^{-1}(sInt(β,β')(V))) \). Therefore, we obtain \(Cl(γ,γ')(f^{-1}(sInt(β,β')(V))) \subseteq f^{-1}(V) \).

(5) \(\Rightarrow \) (6): Let \(V \in SO(β,β')(Y) \). Then \(sCl(β,β')(V) \in SR(β,β')(Y) \). By Lemma 2 and (5) we obtain \(Cl(γ,γ')(f^{-1}(V)) \subseteq Cl(γ,γ')(f^{-1}(sCl(β,β')(V))) \subseteq f^{-1}(sCl(β,β')(V)) \).

(6) \(\Rightarrow \) (1): Let \(x \in X \) and \(V \in SO(β,β')(Y) \). By Lemma 2, we have \(sCl(γ,γ')(X) \subseteq SR(γ,γ')(X) \) and \(f(x) \notin Y \setminus sCl(β,β')(Y \setminus sCl(β,β')(V)) \). Thus, by (6) we obtain \(x \notin Cl(γ,γ')(f^{-1}(Y \setminus sCl(β,β')(V))) \). There exists a \((γ, γ')\)-open set \(U \) of \(x \) such that \(U \cap f^{-1}(Y \setminus sCl(β,β')(V)) = \emptyset \). Therefore, we have \(f(U) \cap (Y \setminus sCl(β,β')(V)) = \emptyset \) and hence \(f(U) \subseteq sCl(β,β')(V) \). This shows that \(f \) is almost \((γ, γ')-(β, β')\)-s-continuous. \(\blacksquare \)
Theorem 2. The following statements are equivalent for a function \(f : (X, \tau) \to (Y, \sigma) \):

1. \(f \) is almost \((\gamma, \gamma')-(\beta, \beta')\)-s-continuous.
2. For each \(x \in X \) and each \(V \in SR_{(\beta, \beta')}(Y) \), there exists a \((\gamma, \gamma')\)-clopent set \(U \) containing \(x \) such that \(f(U) \subseteq V \).
3. For each \(x \in X \) and each \(V \in SO_{(\beta, \beta')}(Y) \), there exists a \((\gamma, \gamma')\)-open set \(U \) containing \(x \) such that \(f(\text{Cl}_{(\gamma, \gamma)}(U)) \subseteq s\text{Cl}_{(\beta, \beta)}(V) \).

Proof. (1) \(\Rightarrow \) (2): Let \(x \in X \) and \(V \in SR_{(\beta, \beta')}(Y) \). By Theorem 1, \(f^{-1}(V) \) is \((\gamma, \gamma')\)-clopent in \(X \). Put \(U = f^{-1}(V) \), then \(x \in U \) and \(f(U) \subseteq V \). The proof of the other implications are obvious.

Theorem 3. The following statements are equivalent for a function \(f : (X, \tau) \to (Y, \sigma) \):

1. \(f \) is almost \((\gamma, \gamma')-(\beta, \beta')\)-s-continuous.
2. \(f(\text{Cl}_{(\gamma, \gamma)}(A)) \subseteq s_{(\beta, \beta')} \text{Cl}_\theta(f(A)) \) for every subset \(A \) of \(X \).
3. \(\text{Cl}_{(\gamma, \gamma)}(f^{-1}(B)) \subseteq f^{-1}(s_{(\beta, \beta')} \text{Cl}_\theta(B)) \) for every subset \(B \) of \(Y \).
4. \(f^{-1}(F) \) is \((\gamma, \gamma')\)-closed in \(X \) for every \((\beta, \beta')\)-semi-\(\theta \)-closed set \(F \) of \(Y \).
5. \(f^{-1}(V) \) is \((\gamma, \gamma')\)-open in \(X \) for every \((\beta, \beta')\)-semi-\(\theta \)-open set \(V \) of \(Y \).

Proof. (1) \(\Rightarrow \) (2): Let \(B \) be any subset of \(Y \) and \(x \notin f^{-1}(s_{(\beta, \beta')} \text{Cl}_\theta(B)) \). Then \(f(x) \notin s_{(\beta, \beta')} \text{Cl}_\theta(B) \) and there exists \(V \in SO_{(\beta, \beta')}(Y, f(x)) \) such that \(s_{(\beta, \beta')} \text{Cl}_\theta(f(A)) \cap B = \emptyset \). By (1), there exists a \((\gamma, \gamma')\)-open set \(U \) containing \(x \) such that \(f(U) \subseteq s_{(\beta, \beta')} \text{Cl}_\theta(f(A)) \). Hence \(f(U) \cap B = \emptyset \) and \(U \cap f^{-1}(B) = \emptyset \). Consequently, we obtain \(x \notin f^{-1}(s_{(\beta, \beta')} \text{Cl}_\theta(f(A))) \).

(2) \(\Rightarrow \) (3): Let \(A \) be any subset of \(X \). By (2), we have \(\text{Cl}_{(\gamma, \gamma)}(A) \subseteq \text{Cl}_{(\gamma, \gamma)}(f^{-1}(f(A))) \subseteq f^{-1}(s_{(\beta, \beta')} \text{Cl}_\theta(f(A))) \) and hence \(f(\text{Cl}_{(\gamma, \gamma)}(A)) \subseteq s_{(\beta, \beta')} \text{Cl}_\theta(f(A)) \).

(3) \(\Rightarrow \) (4): Let \(F \) be any \((\beta, \beta')\)-semi-\(\theta \)-closed set of \(Y \). Then, by (3), we have \(f(\text{Cl}_{(\gamma, \gamma)}(f^{-1}(F))) \subseteq s_{(\beta, \beta')} \text{Cl}_\theta(f(f^{-1}(F))) \subseteq s_{(\beta, \beta')} \text{Cl}_\theta(f) = F \). Therefore, we have \(\text{Cl}_{(\gamma, \gamma)}(f^{-1}(F)) \subseteq f^{-1}(F) \) and hence \(\text{Cl}_{(\gamma, \gamma)}(f^{-1}(F)) = f^{-1}(F) \). This shows that \(f^{-1}(F) \) is \((\gamma, \gamma')\)-closed set in \(X \).

(4) \(\Rightarrow \) (5): This is obvious.

(5) \(\Rightarrow \) (1): Let \(x \in X \) and \(V \in SO_{(\beta, \beta')}(Y, f(x)) \). By Lemmas 1 and 2, \(s_{(\beta, \beta')} \text{Cl}(V) \) is \((\beta, \beta')\)-\(\theta \)-open in \(Y \). Put \(U = f^{-1}(s_{(\beta, \beta')} \text{Cl}(V)) \). Then by (5), \(U \) is \((\gamma, \gamma')\)-open containing \(x \) and \(f(U) \subseteq s_{(\beta, \beta')} \text{Cl}(V) \). Thus, \(f \) is almost \((\gamma, \gamma')-(\beta, \beta')\)-s-continuous.

Definition 15. A point \(x \in X \) is said to be a \((\gamma, \gamma')\)-\(\theta \)-adherent point of a subset \(A \) of \(X \) if \(\text{Cl}_{(\gamma, \gamma)}(U) \cap A \neq \emptyset \) for every \((\gamma, \gamma')\)-open set \(U \) containing \(x \).

The set of all \((\gamma, \gamma')\)-\(\theta \)-adherent points of \(A \) is called the \((\gamma, \gamma')\)-\(\theta \)-closure of \(A \) and is denoted by \(\text{Cl}_{(\gamma, \gamma)}(A) \). Note that a subset \(A \) is called \((\gamma, \gamma')\)-\(\theta \)-closed...
if $\text{Cl}_{(\gamma,\gamma')}(A) = A$. The complement of a (γ,γ')-θ-closed set is called a (γ,γ')-θ-open set.

The proof of the following theorem is similar to Theorem 3 and thus omitted.

Theorem 4. The following statements are equivalent for a function $f : (X, \tau) \to (Y, \tau)$:

1. f is almost (γ,γ')-(β,β')-s-continuous.
2. $\text{Cl}_{(\gamma,\gamma')}((f^{-1}(A))) \subseteq f^{-1}(s_{(\beta,\beta')}\text{Cl}_{\theta}(A))$ for every subset A of Y.
3. $f(\text{Cl}_{(\gamma,\gamma')}(B)) \subseteq s_{(\beta,\beta')}\text{Cl}_{\theta}(f(B))$ for every subset B of X.
4. $f^{-1}(F)$ is (γ,γ')-θ-closed in X for every (β,β')-semi-θ-closed set F of Y.
5. $f^{-1}(V)$ is (γ,γ')-θ-open in X for every (β,β')-semi-θ-open set V of Y.

Theorem 5. If $f : (X, \tau) \to (Y, \tau)$ is almost (γ,γ')-(β,β')-s-continuous and A is (γ,γ')-s-closed in X, then $f(A)$ is (β,β')-s-closed in Y.

Proof. Let $\{V_\alpha : \alpha \in I\}$ be any cover of $f(A)$ by (β,β')-semiregular sets of Y. By Theorem 1, $\{f^{-1}(V_\alpha) : \alpha \in I\}$ is a cover of A by (γ,γ')-clopen sets of X. By Proposition 1, there exists a finite subset I_0 of I such that $A \subseteq \cup s\text{Cl}_{(\gamma,\gamma')}\{f^{-1}(V_\alpha) : \alpha \in I_0\}$ and hence $f(A) \subseteq \cup s\text{Cl}_{(\beta,\beta')}\{V_\alpha : \alpha \in I_0\}$. Hence $f(A)$ is (β,β')-semiclosed relative to Y. \blacksquare

Theorem 6. If $f : (X, \tau) \to (Y, \tau)$ is almost (γ,γ')-(β,β')-s-continuous surjection and X is (γ,γ')-s-closed, then Y is (β,β')-s-closed.

Proof. The proof is clear. \blacksquare

Theorem 7. Let $f : (X, \tau) \to (Y, \tau)$ be a function and $x \in X$. If there exists a (γ,γ')-open set N of X containing x such that the restriction f_N of f to N is almost (γ,γ')-(β,β')-s-continuous at x, then f is almost (γ,γ')-(β,β')-s-continuous at x, where γ and γ' are regular.

Proof. Let U be any (γ,γ')-semiregular set containing $f(x)$. Since f_N is almost (γ,γ')-(β,β')-s-continuous at x, there is a (γ,γ')-open set V containing x such that $x \in N \cap V$ and $f(N \cap V) \subseteq s\text{Cl}_{(\beta,\beta')}(U) = U$ or $f(N \cap V) \subseteq U$. Since γ and γ' are regular, $N \cap V$ is a (γ,γ')-open set containing x. Hence f is almost (γ,γ')-(β,β')-s-continuous at x. \blacksquare

Theorem 8. Let X_1, X_2 be (γ,γ')-closed sets in a topological space (X, τ) and $X = X_1 \cup X_2$. If $f : X \to Y$ be a function and f_{X_1} and f_{X_2} are almost (γ,γ')-(β,β')-s-continuous functions, then f is almost (γ,γ')-(β,β')-s-continuous, where γ and γ' are regular.
Proof. Let A be a (β, β')-semiregular subset of Y. Since f_{X_1} and f_{X_2} are both almost $(\gamma, \gamma')-(\beta, \beta')$-s-continuous, $(f_{X_1})^{-1}(A)$ and $(f_{X_2})^{-1}(A)$ are both (γ, γ')-clopen subsets of X and $f^{-1}(A) = (f_{X_1})^{-1}(A) \cup (f_{X_1})^{-1}(A)$. Since γ and γ' are regular, $f^{-1}(A)$ is the union of two (γ, γ')-clopen sets and is thus (γ, γ')-clopen in X. Hence f is almost $(\gamma, \gamma')-(\beta, \beta')$-s-continuous function.

Remark 1. The following example shows that the regularity on γ and γ' of Theorem 8 cannot be removed.

Example 2. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$. Define the operations $\gamma : \tau \to \mathcal{P}(X)$, $\gamma' : \tau \to \mathcal{P}(X)$, $\beta : \sigma \to \mathcal{P}(X)$ and $\beta' : \sigma \to \mathcal{P}(X)$ by

$$A^\gamma = \begin{cases} A & \text{if } b \notin A \\ \text{Cl}(A) & \text{if } b \in A, \end{cases} \quad A^\gamma' = \begin{cases} \text{Cl}(A) & \text{if } b \notin A \\ A & \text{if } b \in A, \end{cases}$$

$$A^\beta = \begin{cases} A & \text{if } a \in A \\ A \cup \{a\} & \text{if } a \notin A \end{cases} \quad A^\beta' = \begin{cases} A & \text{if } c \in A \\ A \cup \{c\} & \text{if } c \notin A. \end{cases}$$

Then, it is shown that γ' is not regular. Let $X_1 = \{b\}$, $X_2 = \{a, c\}$ and $f : (X, \tau) \to (Y, \tau)$ be an identity function. Clearly, f_{X_1} and f_{X_2} are almost $(\gamma, \gamma')-(\beta, \beta')$-s-continuous functions but f is almost $(\gamma, \gamma')-(\beta, \beta')$-s-continuous function.

Theorem 9. If $f : X \to Y$ be a function f_{X_1} and f_{X_2} are both almost $(\gamma, \gamma')-(\beta, \beta')$-s-continuous at a point $x \in X = X_1 \cup X_2$, then f is almost $(\gamma, \gamma')-(\beta, \beta')$-s-continuous at x, where γ and γ' are regular operations.

Proof. Let U be any (γ, γ')-semiregular set containing $f(x)$. Since $x \in X_1 \cap X_2$ and f_{X_1}, f_{X_2} are both almost $(\gamma, \gamma')-(\beta, \beta')$-s-continuous at a point x, there exists (γ, γ')-open sets V_1 and V_2 of X, respectively containing x such that $x \in X_1 \cap V_1, f(X_1 \cap V_1) \subseteq U$ and $x \in X_2 \cap V_2, f(X_2 \cap V_2) \subseteq U$. Since $X = X_1 \cup X_2, f(V_1 \cap V_2) = f(X_1 \cap V_1 \cap V_2) \cup f(X_2 \cap V_1 \cap V_2) \subseteq f(X_1 \cap V_1) \cup f(X_2 \cap V_2) \subseteq U$. Since γ and γ' are regular, $V_1 \cap V_2 = V$ is a (γ, γ')-open set containing x such that $f(V) \subseteq U$ and hence f is almost $(\gamma, \gamma')-(\beta, \beta')$-s-continuous by Theorem 1.

Acknowledgement. The authors wish to thank the referee for his suggestions and corrections which helped to improve this paper.

References

N. Rajesh
Department of Mathematics
Rajah Serfoji Govt. College
Thanjavur-613005, Tamilnadu, India
e-mail: nrajesh_topology@yahoo.co.in

V. Vijayabharathi
Department of Mathematics
National Institute of Technology
Tiruchirappalli, Tamilnadu, India
e-mail: vijayabharathi_v@yahoo.com

Received on 22.11.2012 and, in revised form, on 25.02.2013.