Yaé Ulrich Gaba

SOME ADVANCES IN THE THEORY OF QUASI-PSEUDOMETRIC TYPE SPACES

Abstract. In this paper, we extend most of the results proved in [4]. In particular, we give some topological properties of the quasi-pseudometric type spaces. Moreover, some fixed point and common fixed point theorems are obtained in the setting of quasi-pseudometric spaces, introduced some months ago by Kazeem et al in [4].

Key words: quasi-pseudometric type spaces, fixed point, left K-completeness.

AMS Mathematics Subject Classification: 47H09.

Symmetric spaces were introduced in 1931 by Wilson [6], as metric-like spaces lacking the triangle inequality. Several fixed point results in such spaces were obtained. In the same dynamics, cone metric spaces were introduced by Huang [3] and many fixed point results concerning mappings in these spaces have also been established. In [5], M. A. Khamsi connected this concept with a generalised form of metric that he named metric type. Namely, he observed that if \(d(x, y) \) is a cone metric, then \(D(x, y) = \|d(x, y)\| \) is symmetric with some special properties, particularly in the case when the underlying cone is normal. Recently in [4], Kazeem et al. discussed the newly introduced notion of quasi-pseudometric type spaces as a logical equivalent to metric type spaces when the initial distance-like function is not symmetric. Some fixed point results of mappings on such spaces were discussed as well in [4]. It is the aim of this article to continue the study of quasi-pseudometric spaces by proving several other fixed point and common fixed point results, hence extending the fixed point results of [4] to a class of mappings satisfying more general contractive conditions.

In this section, we recall briefly some elementary definitions from the asymmetric topology which are necessary for a good understanding of the work below. For recent results and detailed explanations for the concepts in the theory of asymmetric spaces, the reader is referred to [2, 4, 7, 8].
Definition 1. Let E be a real Banach space with norm $\|\cdot\|$ and P be a subset of E. Then P is called a cone if and only if

(a) P is closed, nonempty and $P \neq \{\theta\}$, where θ is the zero vector in E;
(b) for any $a, b \geq 0$, and $x, y \in P$, we have $ax + by \in P$;
(c) for $x \in P$, if $-x \in P$, then $x = \theta$.

Given a cone P in a Banach space E, we define on E a partial order \preceq with respect to P by

$$x \preceq y \iff y - x \in P.$$

We also write $x \prec y$ whenever $x \preceq y$ and $x \neq y$, while $x \ll y$ will stand for $y - x \in \text{Int}(P)$ (where $\text{Int}(P)$ designates the interior of P).

The cone P is called normal if there is a number $C > 0$, such that for all $x, y \in E$, we have

$$\theta \preceq x \preceq y \implies \|x\| \leq C\|y\|.$$

The least positive number satisfying this inequality is called the normal constant of P. Therefore, we shall then say that P is a K-normal cone to indicate the fact that the normal constant is K.

Definition 2 (Compare [4]). Let X be a nonempty set. Suppose the mapping $q : X \times X \to E$ satisfies

(q1) $\theta \preceq q(x, y)$ for all $x, y \in X$;
(q2) $q(x, y) = \theta = q(y, x)$ if and only if $x = y$;
(q3) $q(x, z) \preceq q(x, y) + q(y, z)$ for all $x, y, z \in X$.

Then, q is called a quasi-cone metric on X, and (X, q) is called a quasi-cone metric space.

Definition 3 (Compare [4]). A sequence in a quasi-cone metric space (X, q) is called

(a) Q-Cauchy or bi-Cauchy if for every $c \in X$ with $c \gg \theta$, there exists $n_0 \in \mathbb{N}$ such that

$$\forall \ n, m \geq n_0 \ q(x_n, x_m) \ll c;$$

(b) left(right) Cauchy if for every $c \in X$ with $c \gg \theta$, there exists $n_0 \in \mathbb{N}$ such that

$$\forall \ n, m : n_0 \leq m \leq n \ q(x_m, x_n) \ll c \ (q(x_n, x_m) \ll c \text{ resp.}).$$

Remark 1. A sequence is Q-Cauchy if and only if it is both left and right Cauchy.

Definition 4. (a) In a quasi-cone metric space (X, q), we say that the sequence (x_n) left converges to $x \in X$ if for every $c \in E$ with $\theta \ll c$ there exists N such that for all $n > N$, $q(x_n, x) \ll c$.

Similarly, in a quasi-cone metric space \((X, q)\), we say that a sequence \((x_n)\) **right converges** to \(x \in X\) if for every \(c \in E\) with \(\theta \ll c\) there exists \(N\) such that for all \(n > N\), \(q(x, x_n) \ll c\).

Finally, in a quasi-cone metric space \((X, q)\), we say that the sequence \((x_n)\) converges to \(x \in X\) if for every \(c \in E\) with \(\theta \ll c\) there exists \(N\) such that for all \(n > N\), \(q(x_n, x) \ll c\) and \(q(x, x_n) \ll c\).

Definition 5. A quasi-cone metric space \((X, q)\) is called
(a) **left complete** (resp. right complete) if every left Cauchy (resp. right Cauchy) sequence in \(X\) left (resp. right) converges.
(b) **bicomplete** if every \(Q\)-Cauchy sequence converges.

Remark 2. A quasi-cone metric space \((X, q)\) is bicomplete if and only if it is left complete and right complete.

Definition 6. Let \((X, q)\) be a quasi-cone metric space. A function \(f : X \to X\) is said to be **Lipschitzian** if there exists some \(\kappa \in \mathbb{R}\) such that

\[q(f(x), f(y)) \leq \kappa q(x, y) \quad \forall \ x, y \in X.\]

The smallest constant which satisfies the above inequality is called the **Lipschitz constant** of \(f\) and is denoted \(\text{Lip}(f)\). In particular \(f\) is said to be **contractive** if \(\text{Lip}(f) \in [0, 1)\) and **nonexpansive** if \(\text{Lip}(f) \leq 1\).

Definition 7 (Compare [1]). Let \(f\) and \(g\) be self maps on a set \(X\). If \(w = fx = gx\) for some \(x \in X\), then \(x\) is called a **coincidence point** of \(f\) and \(g\), and \(w\) is called the **point of coincidence** of \(f\) and \(g\).

Definition 8. Let \(f\) and \(g\) be self maps on a nonempty set \(X\). We say that \(f\) and \(g\) are **weakly compatible** if they commute at their coincidence point, that is there exists \(x_0 \in X\) such that \(fx_0 = gx_0\) then \(gf x_0 = fg x_0\).

We also give the following proposition that we take from [1] by omitting the proof.

Proposition 1 (Compare [1]). Let \(f\) and \(g\) be weakly compatible self maps on a set \(X\). If \(f\) and \(g\) have a unique point of coincidence \(w = fx = gx\), then \(w\) is the unique common fixed point of \(f\) and \(g\).

We also have the following important characterization

Lemma 1. Let \((X, q)\) be a quasi-cone metric space, \(P\) be a \(K\)-normal cone and \((x_n)\) be a sequence in \(X\). Then \((x_n)\) is a bi-Cauchy sequence if and only if \(q(x_n, x_m) \to \theta\) as \(n, m \to \infty\).

We now connect the notion of quasi-cone metric to the one of quasi-pseudo-metric type space via the following theorem.
Theorem 1 (Compare [4] Theorem 28). Let \((X, q)\) be a quasi-cone metric space over the Banach space \(E\) with the \(K\)-normal cone \(P\). The mapping \(Q : X \times X \to [0, \infty)\) defined by \(Q(x, y) = \|q(x, y)\|\) satisfies the following properties

\((Q1)\) \(Q(x, x) = 0\) for any \(x \in X\);
\((Q2)\) \(Q(x, y) \leq K(Q(x, z_1) + Q(z_1, z_2) + \cdots + Q(z_n, y))\), for any points \(x, y, z_i \in X, i = 1, 2, \ldots, n\).

We are therefore led to the following definition.

Definition 9 ([4]). Let \(X\) be a non-empty set, and let the function \(D : X \times X \to [0, \infty)\) satisfy the following properties:

\((D1)\) \(D(x, x) = 0\) for any \(x \in X\);
\((D2)\) \(D(x, y) \leq \alpha(D(x, z_1) + D(z_1, z_2) + \cdots + D(x_n, y))\) for any points \(x, y, z_i \in X, i = 1, 2, \ldots, n\) and some constant \(\alpha > 0\).

Then \((X, D, \alpha)\) is called a quasi-pseudometric type space. Moreover, if \(D(x, y) = 0 = D(y, x) \implies x = y\), then \(D\) is said to be a \(T_0\)-quasi-pseudometric type space. The latter condition is referred to as the \(T_0\)-condition.

Remark 3.
- Let \(D\) be a quasi-pseudometric type on \(X\), then the map \(D^{-1}\) defined by \(D^{-1}(x, y) = D(y, x)\) whenever \(x, y \in X\) is also a quasi-pseudometric type on \(X\), called the conjugate of \(D\). We shall also denote \(D^{-1}\) by \(D^t\) or \(\bar{D}\).
- It is easy to verify that the function \(D^s\) defined by \(D^s := D \vee D^{-1}\), i.e. \(D^s(x, y) = \max\{D(x, y), D(y, x)\}\) defines a metric type (see [5]) on \(X\) whenever \(D\) is a \(T_0\)-quasi-pseudometric type.
- If we substitute the property \((D1)\) by the following property

\((D3) : D(x, y) = 0 \iff x = y\),

we obtain a \(T_0\)-quasi-pseudometric type space directly. For instance, this could be done if the map \(D\) is obtained from quasi-cone metric.

Moreover, for \(\alpha = 1\), we recover the classical pseudometric, hence quasi-pseudometric type spaces generalize quasi-pseudometrics. It is worth mentioning that if \((X, D, \alpha)\) is a pseudometric type space, then for any \(\beta \geq \alpha\), \((X, D, \beta)\) is also a pseudometric type space. We give the following example to illustrate the above comment.

Example 1. Let \(X = \{a, b, c\}\) and the mapping \(D : X \times X \to [0, \infty)\) defined by \(D(a, b) = D(c, b) = 1/5, D(b, c) = D(b, a) = D(c, a) = 1/4, D(a, c) = 1/2, D(x, x) = 0\) for any \(x \in X\) and \(D(x, y) = D(y, x)\) for any \(x, y \in X\). Since

\[
\frac{1}{2} = D(a, c) > D(a, b) + D(b, c) = \frac{9}{20},
\]

then \((X, D, 1)\) is a \(T_0\)-quasi-pseudometric type space.
then we conclude that X is not a quasi-pseudometric space. Nevertheless, with $\alpha = 2$, it is very easy to check that $(X, D, 2)$ is a quasi-pseudometric type space.

Definition 10 ([4]). Let (X, D, α) be a quasi-pseudometric space. The convergence of a sequence (x_n) to x with respect to D, called D-convergence or **left-convergence** and denoted by $x_n \xrightarrow{D} x$, is defined in the following way

(1) \[x_n \xrightarrow{D} x \iff D(x, x_n) \to 0. \]

Similarly, the convergence of a sequence (x_n) to x with respect to D^{-1}, called D^{-1}-convergence or **right-convergence** and denoted by $x_n \xrightarrow{D^{-1}} x$, is defined in the following way

(2) \[x_n \xrightarrow{D^{-1}} x \iff D(x_n, x) \to 0. \]

Finally, in a quasi-pseudometric space (X, D, α), we shall say that a sequence (x_n) **D^{s}-converges** to x if it is both left and right convergent to x, and we denote it as $x_n \xrightarrow{D^{s}} x$ or $x_n \xrightarrow{D} x$ when there is no confusion. Hence

\[x_n \xrightarrow{D^{s}} x \iff x_n \xrightarrow{D} x \text{ and } x_n \xrightarrow{D^{-1}} x. \]

Definition 11 ([4]). A sequence (x_n) in a quasi-pseudometric type space (X, D, α) is called

(a) **left K-Cauchy** with respect to D if for every $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

\[\forall n, k : n_0 \leq k \leq n \quad D(x_k, x_n) < \epsilon; \]

(b) **right K-Cauchy** with respect to D if for every $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

\[\forall n, k : n_0 \leq k \leq n \quad D(x_n, x_k) < \epsilon; \]

(c) **D^{s}-Cauchy** if for every $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

\[\forall n, k \geq n_0 \quad D(x_n, x_k) < \epsilon. \]

Remark 4.

• A sequence is left K-Cauchy with respect to d if and only if it is right K-Cauchy with respect to D^{-1}.

• A sequence is D^{s}-Cauchy if and only if it is both left and right K-Cauchy.

Definition 12 ([4]). A quasi-pseudometric space (X, D, α) is called **left-complete** provided that any left K-Cauchy sequence is D-convergent.
Definition 13 ([4]). A quasi-pseudometric space \((X, D, \alpha)\) is called **right-complete** provided that any right \(K\)-Cauchy sequence is \(D\)-convergent.

Definition 14 ([4]). A \(T_0\)-quasi-pseudometric space \((X, D, \alpha)\) is called **bicomplete** provided that the metric \(D^s\) on \(X\) is complete.

2. First results

In [4], Kazeem et al. proved the following:

Theorem 2. Let \((X, q)\) be a bicomplete quasi-cone metric space, \(P\) a \(K\)-normal cone. Suppose that a mapping \(T : X \to X\) satisfies the contractive condition

\[q(Tx, Ty) \leq k q(x, y) \quad \text{for all } x, y \in X, \]

where \(k \in [0, 1)\). Then \(T\) has a unique fixed point. Moreover for any \(x \in X\), the orbit \(\{T^n x, n \geq 0\}\) converges to the fixed point.

We start by an application of the above theorem

Theorem 3. Let \((X, q)\) be a bicomplete quasi-cone metric space, \(P\) a \(K\)-normal cone. Let \(T : X \to X\) be a map such that for every \(n \in \mathbb{N}\), there is \(\lambda_n \in (0, 1)\) such that

\[q(T^n x, T^n y) \leq \lambda_n q(x, y) \quad \text{for all } x, y \in X. \]

and let \(\lim_{n \to 0} \lambda_n = 0\). Then \(T\) has a unique fixed point \(\omega \in X\).

Proof. Take \(\lambda\) such that \(0 < \lambda < 1\). Since \(\lim_{n \to 0} \lambda_n = 0\), there exists \(n_0 \in \mathbb{N}\) such that \(\lambda_n < \lambda\) for each \(n \geq n_0\). Then \(q(T^n x, T^n y) \leq \lambda_n q(x, y)\) for all \(x, y \in X\) whenever \(n \geq n_0\). In other words, for any \(m \geq n_0\), \(g = T^m\) satisfies

\[q(gx, gy) \leq k q(x, y) \quad \text{for all } x, y \in X. \]

Theorem 2 implies that \(g\) has a unique fixed point, say \(\omega\). Then \(T^m \omega = \omega\), implying that \(T^{m+1} \omega = T(T^m \omega) = T^m(T \omega) = T \omega\) and \(T \omega\) is also a fixed point of \(g = T^m\). Since the fixed point is unique, it follows that \(T \omega = \omega\) and \(\omega\) is the unique fixed point of \(T\).

We now state below a generalization of this theorem.

Theorem 4. Let \((X, q)\) be a bicomplete quasi-cone metric space, \(P\) a \(K\)-normal cone. Suppose that a mapping \(T : X \to X\) is such that for every \(n \in \mathbb{N}\), \(T^n\) is Lipschitzian and that \(\sum_{n=0}^{\infty} \text{Lip}(T^n) < \infty\). Then \(T\) has a unique fixed point \(x^* \in X\).
Proof. Since for any $n \in \mathbb{N}$, T^n is Lipschitzian, hence there exists $k_n := \text{Lip}(T^n) \geq 0$ such that

$$q(T^n x, T^n y) \leq k_n \, q(x, y) \quad \text{for all } x, y \in X.$$

Now let $x \in X$. For any $n, h \in \mathbb{N}$, we have

$$q(T^n x, T^{n+h} x) \leq k_n \, q(x, T^h x) \leq k_n \left[\sum_{i=0}^{h-1} q(T^i x, T^{i+1} x) \right].$$

Hence

$$q(T^n x, T^{n+h} x) \leq k_n \left(\sum_{i=0}^{h-1} k_i \right) q(x, T^n x),$$

since

$$q(T^i, T^{i+1} x) \leq k_i \, q(x, T^n x), \quad \text{for all } i \in \mathbb{N}.$$

Since $\sum_{n=0}^{\infty} \text{Lip}(T^n)$ is convergent, then $\lim_{n \to 0} \text{Lip}(T^n) = 0$ and therefore inequality (4) entails that

$$\|q(T^n x, T^{n+h} x)\| \leq K k_n \left(\sum_{i=0}^{h-1} k_i \right) \|q(x, T^n x)\| \to 0 \quad \text{as } n \to \infty.$$

Similarly, one shows that

$$\|q(T^{n+h} x, T^n x)\| \leq K k_n \left(\sum_{i=0}^{h-1} k_i \right) \|q(T^n x, x)\| \to 0 \quad \text{as } n \to \infty.$$

From relations (5) and (6), we conclude that $(T^n x)$ is a bi-Cauchy sequence. Since (X, q) is bicomplete, there exists $x^* \in X$ such that $(T^n x)$ converges to x^*. First let us show that x^* is a fixed point of T.

On one side, we have

$$q(T^{n-1} x, x^*) \leq q(T^{n-1} x, T^n x) + q(T^n x, x^*)$$

$$\leq k_{n-1} q(x, T x) + q(T^n x, x^*),$$

and on the other side

$$q(x^*, T^{n-1} x) \leq q(x^*, T^n x) + q(T^n x, T^{n-1} x)$$

$$\leq k_{n-1} q(T x, x) + q(x^*, T^n x),$$
From (7), we have that
\[q(Tx^*, x^*) \leq q(Tx^*, T^nx) + q(T^n x, x^*) \]
\[\leq k_1 q(x^*, T^{n-1} x) + q(T^n x, x^*) \to \theta \text{ as } n \to \infty, \]
i.e
\[q(Tx^*, x^*) = \theta. \]

In the same manner, from (8), we have that
\[q(x^*, Tx^*) = \theta. \]

Hence
\[q(Tx^*, x^*) = \theta = q(x^*, Tx^*). \]

This implies, using property \((q2)\) that \(Tx^* = x^*\). So \(x^*\) is a fixed point of \(T\). Moreover, if \(z^*\) is a fixed point of \(T\), then for all \(n \geq 1\), we have
\[q(x^*, z^*) = q(T^n x^*, T^n z^*) \leq k_n q(x^*, z^*), \]
and
\[q(z^*, x^*) = q(T^n z^*, T^n x^*) \leq k_n q(z^*, x^*). \]

Since \(\lim_{n \to 0} Lip(T^n) = 0\), hence \(\|q(x^*, z^*)\| = 0 = \|q(z^*, x^*)\|\) and \(x^* = z^*\). Therefore the fixed point is unique. \(\blacksquare\)

In the next section, we give some topological properties of quasi-pseudometric type spaces. Most of them deal with sequences and follow closely the classical properties of sequences pseudometric spaces.

3. Topology on Quasi-pseudometric type spaces and fixed point results

3.1. Some topological properties. Let \((X, D, \alpha)\) be a quasi-pseudometric type space. Then for each \(x \in X\) and \(\epsilon > 0\), the set
\[B_D(x, \epsilon) = \{y \in X : D(x, y) < \epsilon\} \]
denotes the open \(\epsilon\)-ball at \(x\) with respect to \(D\). It should be noted that the collection
\[\{B_D(x, \epsilon) : x \in X, \epsilon > 0\} \]
yields a base for the topology \(\tau(D)\) induced by \(D\) on \(X\). In a similar manner, for each \(x \in X\) and \(\epsilon \geq 0\), we define
\[C_D(x, \epsilon) = \{y \in X : D(x, y) \leq \epsilon\}, \]
known as the closed \(\epsilon\)-ball at \(x\) with respect to \(D\).
Also the collection
\[\{D_{d^{-1}}(x, \epsilon) : x \in X, \epsilon > 0\} \]
yields a base for the topology \(\tau(D^{-1})\) induced by \(D^{-1}\) on \(X\). The set \(C_D(x, \epsilon)\) is \(\tau(D^{-1})\)-closed, but not \(\tau(D)\)-closed in general.

The balls with respect to \(D\) are often called \textit{forward balls} and the topology \(\tau(D)\) is called \textit{forward topology}, while the balls with respect to \(D^{-1}\) are often called \textit{backward balls} and the topology \(\tau(D^{-1})\) is called \textit{backward topology}.

The topology \(\tau(D)\) of a quasi-pseudometric type space \((X, D, \alpha)\) can be defined starting with starting from the family \(\Pi_D(x)\) of neighbourhoods of an arbitrary point \(x \in X\).

\[
V \in \Pi_D(x) \iff \exists \; \epsilon > 0 \text{ such that } B_D(x, \epsilon) \subset V \\
\iff \exists \; \epsilon' > 0 \text{ such that } C_D(x, \epsilon) \subset V.
\]

To see the equivalence in the above definition, we can take for instance \(\epsilon' = \epsilon/3\).

The following proposition contains some simple properties of convergent sequences.

Proposition 2. Let \((x_n)\) be a sequence in quasi-pseudometric type space \((X, D, \alpha)\).

(a) If \((x_n)\) is \(D\)-convergent to \(x\) and \(D^{-1}\)-convergent to \(y\), then \(D(x, y) = 0\).

(b) If \((x_n)\) is \(D\)-convergent to \(x\) and \(D(y, x) = 0\), then \((x_n)\) is also \(D\)-convergent to \(y\).

Proof.

(a) Letting \(n \to \infty\) in the inequality
\[
D(x, y) \leq \alpha[D(x, x_n) + D(x_n, y)],
\]
one obtains \(D(x, y) = 0\).

(b) The result follows from the relations
\[
D(x_n, y) \leq \alpha[D(y, x) + D(x, x_n)] = \alpha D(x, x_n) \to 0.
\]

Also, the following simple remarks concerning sequences in quasi-pseudometric type spaces are true.

Proposition 3. Let \((x_n)\) be as sequence in a quasi-pseudometric type space \((X, D, \alpha)\).

(a) If \((x_n)\) is left \(K\)-Cauchy and has a subsequence which is \(\tau(D)\)-convergent to \(x\), then \((x_n)\) is \(\tau(D)\)-convergent to \(x\).
(b) If \((x_n) \) is left \(K \)-Cauchy and has a subsequence which is \(\tau(D^{-1}) \)-convergent to \(x \), then \((x_n) \) is \(\tau(D^{-1}) \)-convergent to \(x \).

Proof. (a) Suppose that \((x_n) \) is left \(K \)-Cauchy and \((x_{n_k}) \) is a subsequence of \((x_n) \) such that \(\lim_{k \to \infty} D(x, x_{n_k}) = 0 \). For \(\epsilon > 0 \) choose \(n_0 \) such that \(n_0 \leq m \leq n \) implies \(D(x_m, x_n) < \epsilon/\alpha \), and let \(k_0 \in \mathbb{N} \) be such that \(n_{k_0} \geq n_0 \) and \(D(x, x_{n_k}) < \epsilon/\alpha \) for all \(k \geq k_0 \). Then, for \(n \geq n_{k_0} \), \(D(x, x_n) \leq \alpha[D(x, x_{n_{k_0}}) + D(x_{n_{k_0}}, x_n)] < 2\epsilon. \)

(b) Reasoning similarly, for \(n \geq n_{k_0} \) let \(k \in \mathbb{N} \) such that \(n_k \geq n \). Then
\[
D(x_n, x) \leq \alpha[D(x_n, x_{n_k}) + D(x_{n_k}, x)] < 2\epsilon.
\]

The proof of the following proposition is trivial and shall then be omitted.

Proposition 4. If a sequence \((x_n) \) in a quasi-pseudometric type space \((X, D, \alpha) \), satisfies
\[
\sum_{n=0}^{\infty} D(x_n, x_{n+1}) < \infty,
\]
then \((x_n) \) is left \(K \)-Cauchy.

Definition 15. A subset \(Y \) of a quasi-pseudometric type space \((X, D, \alpha) \) is called precompact if for every \(\epsilon > 0 \) there exists a finite subset \(Z \) of \(Y \) such that
\[
Y \subset \bigcup \{B_D(z, \epsilon) : z \in Z\}.
\]

If for every \(\epsilon > 0 \) there exists a finite subset \(Z \) of \(X \) such that (9) holds, then the set \(Y \) is called outside precompact. One obtains the same notions if one works with closed balls \(C_D(z, \epsilon) z \in Z \).

Obviously a precompact set is outside precompact, but the converse is not true. We then have the following characterization.

Proposition 5. Let \((X, D, \alpha) \) be a quasi-pseudometric type space. A subset \(Y \) of \(X \) is precompact if and only if for every \(\epsilon > 0 \) there is a finite subset \(\{x_1, x_2, \ldots, x_n\} \subset X \) such that \(Y \subset \bigcup_{i=1}^{n} B_D(x_i, \epsilon) \) and \(Y \cap B_{D^{-1}}(x_i, \epsilon) \neq \emptyset \) for all \(i = 1, 2, \ldots, n \).

Proof. For \(\epsilon > 0 \), let \(\{x_1, x_2, \ldots, x_n\} \subset X \) such that the conditions hold for \(\epsilon/2\alpha \). If \(y_i \in Y \cap B_{D^{-1}}(x_i, \epsilon/2\alpha), i = 1, 2, \ldots, n \), then \(Y \subset \bigcup_{i=1}^{n} B_D(x_i, \epsilon) \).

Indeed, for any \(y \in Y \) there exists \(k \in \{1, 2, \ldots, n\} \) such that \(D(x_k, y) < \epsilon/2\alpha \), implying
\[
D(y_k, y) \leq \alpha[D(y_k, x_k) + D(x_k, y)] = \alpha[D^{-1}(x_k, y_k) + D(x_k, y)] < \epsilon.
\]
3.2. Fixed point results. We start with the following lemma and repeat the proof as it is in [4].

Lemma 2 (Compare [4] Lemma 38). Let \((y_n)\) be a sequence in a quasi-pseudometric type space \((X, D, \alpha)\) such that

\[
D(y_n, y_{n+1}) \leq \lambda D(y_{n-1}, y_n)
\]

for some \(\lambda > 0\) with \(\lambda < \min\{1, 1/\alpha\}\). Then \((y_n)\) is left \(K\)-Cauchy.

Proof. Let \(m < n \in \mathbb{N}\). From the condition \((D2)\) in the definition of a quasi-pseudometric type, we can write:

\[
D(y_m, y_n) \leq \alpha [D(y_m, y_m+1) + D(y_{m+1}, y_n)] \\
\leq \alpha D(y_m, y_{m+1}) + \alpha^2 D(y_{m+1}, y_{m+2}) + \alpha^2 D(y_{m+2}, y_n) \\
\vdots \\
\leq \alpha D(y_m, y_{m+1}) + \alpha^2 D(y_{m+1}, y_{m+2}) + \cdots \\
+ \alpha^{n-m-1} D(y_{n-2}, y_{n-1}) + \alpha^{n-m} D(y_{n-1}, y_n).
\]

From (10) and \(\lambda < \frac{1}{\alpha}\), the above becomes

\[
D(y_m, y_n) \leq (\alpha \lambda^m + \alpha^2 \lambda^{m+1} + \cdots + \alpha^{n-m} \lambda^{n-1}) D(y_0, y_1) \\
\leq \alpha \lambda^m (1 + \alpha \lambda + \cdots + (\alpha \lambda)^{n-1-m}) D(y_0, y_1) \\
\leq \frac{\alpha \lambda^m}{1 - \alpha \lambda} D(y_0, y_1) \to 0 \text{ as } m \to \infty.
\]

It follows that \((y_n)\) is left \(K\)-Cauchy. Similarly,

Lemma 3. Let \((y_n)\) be a sequence in a quasi-pseudometric type space \((X, D, \alpha)\) such that

\[
D^{-1}(y_n, y_{n+1}) \leq \lambda D^{-1}(y_{n-1}, y_n)
\]

for some \(\lambda > 0\) with \(\lambda < \min\{1, 1/\alpha\}\). Then \((y_n)\) is right \(K\)-Cauchy.

We now state our first fixed point result.

Theorem 5. Let \((X, D, \alpha)\) be a \(T_0\)-quasi-pseudometric type space. Suppose that \(f, g : X \to X\) are mappings such that

\[
D(fx, fy) \leq k D(gx, gy) \text{ for all } x, y \in X,
\]

where \(k < \min\{1, 1/\alpha\}\). If the range of \(g\) contains the range of \(f\) and \(g(X)\) is bicomplete, then \(f\) and \(g\) have a unique point of coincidence. Moreover if \(f\) and \(g\) are weakly compatible, then \(f\) and \(g\) have a unique common fixed point.
Proof. Take an arbitrary \(x_0 \in X \). Choose a point \(x_1 \) in \(X \) such that \(f(x_0) = g(x_1) \). This can be done, since \(f(X) \subset g(X) \). Iterating this process, once \(x_n \) is chosen in \(X \), we can obtain \(x_{n+1} \) in \(X \) such that \(f(x_n) = g(x_{n+1}) \). Then

\[
D(gx_n, gx_{n+1}) = D(fx_{n-1}, fx_n) \leq kD(gx_{n-1}, gx_n) \\
\leq k^2D(gx_{n-2}, gx_{n-1}) \leq \ldots \leq k^nD(gx_0, gx_1).
\]

i.e.

\[
D(gx_n, gx_{n+1}) \leq k^nD(gx_0, gx_1).
\]

Similarly,

\[
D(gx_{n+1}, gx_n) \leq k^nD(gx_1, gx_0).
\]

Hence \((gx_n)\) is a bi-Cauchy sequence. Since \(g(X) \) is bicomplete, there exists \(x^* \in g(X) \) such that \((gx_n)\) \(D^* \)-converges to \(x^* \). In other words, there is a \(p^* \in X \) such that \((gx_n)\) converges to \(g(p^*) = x^* \).

Moreover

\[
D(gx_n, fp^*) = D(fx_{n-1}, fp^*) \leq kD(gx_{n-1}, gp^*) \longrightarrow 0, \text{ as } n \longrightarrow,
\]

In the same way, we establish that \(D(fp^*, gx_n) \longrightarrow 0 \) as \(n \longrightarrow \infty \), to then conclude that \(gx_n \longrightarrow fp^* \). The uniqueness of the limit implies that \(fp^* = gp^* \). We finish the proof by showing that \(f \) and \(g \) have a unique point of coincidence. For this, assume \(z^* \in X \) is a point such that \(fz^* = gz^* \).

Now

\[
D(gz^*, gp^*) = D(fz^*, fp^*) \leq kD(gz^*, gp^*),
\]

which gives \(D(gz^*, gp^*) = 0 \). On the other hand, by the same reasoning, it also clear that \(D(gp^*, gz^*) = 0 \). By property the \(T_0 \)-condition, \(gz^* = gp^* \).

From Proposition 1, \(f \) and \(g \) have a unique common fixed point.

Theorem 6. Let \((X, D, \alpha)\) be a \(T_0 \)-quasi-pseudometric type space. Suppose that \(f, g : X \rightarrow X \) are mappings such that Suppose that mappings \(f, g : X \rightarrow X \) satisfy the contractive condition

\[
D(fx, fy) \leq k \left[D(fx, gy) + D(gx, fy) \right] \text{ for all } x, y \in X,
\]

where \(k \geq 0 \) such that \(\frac{k}{1-k} < \min\{1, 1/\alpha\} \). If the range of \(g \) contains the range of \(f \) and \(g(X) \) is bicomplete, then \(f \) and \(g \) have a unique coincidence point in \(X \). Moreover if \(f \) and \(g \) are weakly compatible, then \(f \) and \(g \) have a unique common fixed point.
Take an arbitrary $x_0 \in X$. Choose a point x_1 in X such that $f(x_0) = g(x_1)$. This can be done, since $f(X) \subseteq g(X)$. Iterating this process, once x_n is chosen in X, we can obtain x_{n+1} in X such that $f(x_n) = g(x_{n+1})$. Then
\[D(gx_n, gx_{n+1}) = D(fx_{n-1}, fx_n) \leq k[D(fx_{n-1}, gx_n) + D(gx_{n-1}, fx_n)] \]
\[\leq kD(gx_{n-1}, gx_{n+1}) \]
\[\leq k[D(gx_{n-1}, gx_n) + D(gx_n, gx_{n+1})], \]
which entails that
\[D(gx_n, gx_{n+1}) \leq \frac{k}{1 - k}(gx_{n-1}, gx_n). \]

Similarly,
\[D(gx_{n+1}, gx_n) \leq \frac{k}{1 - k}D(gx_n, gx_{n-1}). \]

Hence (gx_n) is a bi-Cauchy sequence. Since $g(X)$ is bicomplete, there exists $x^* \in g(X)$ such that (gx_n) D^*-converges to x^*. In other words, there is a $p^* \in X$ such that (gx_n) converges to $g(p^*) = x^*$.

Moreover since
\[D(gx_n, fp^*) = D(fx_{n-1}, fp^*) \leq k[D(fx_{n-1}, gp^*) + D(gx_{n-1}, fp^*)], \]
we get that
\[D(gp^*, fp^*) \leq kD(gp^*, fp^*) \]
which implies that $D(gp^*, fp^*) = 0$.

In the same way, we establish that $D(fp^*, gp^*) = 0$, to then conclude that $fp^* = gp^*$.

We finish the proof by showing that f and g have a unique point of coincidence. For this, assume $z^* \in X$ is a point such that $fz^* = gz^*$. Now
\[D(gz^*, gp^*) = D(fz^*, fp^*) \leq k[D(fz^*, gp^*) + D(gz^*, fp^*)] \]
\[\leq 2kD(gz^*, gp^*), \]
which gives $D(gz^*, gp^*) = 0$. On the other hand, by the same reasoning, it also clear that $D(gp^*, gz^*) = 0$. Therefore $gz^* = gp^*$. From Proposition 1, f and g have a unique common fixed point.

Theorem 7. Let (X, D, α) be a T_0-quasi-pseudometric type space. Suppose that $f, g : X \rightarrow X$ are mappings such that
\[D(fx, fy) \leq \lambda D(gx, gy) + \gamma D(fx, gy) \text{ for all } x, y \in X. \]
where λ, γ are positive constants such that $\lambda + 2\gamma < \min\{1, 1/\alpha\}$. If the range of g contains the range of f and $g(X)$ is bicomplete, then f and g have a unique coincidence point in X. Moreover if f and g are weakly compatible, then f and g have a unique common fixed point.
Proof. Take an arbitrary \(x_0 \in X \). Choose a point \(x_1 \in X \) such that \(f(x_0) = g(x_1) \). This can be done, since \(f(X) \subset g(X) \). Iterating this process, once \(x_n \) is chosen in \(X \), we can obtain \(x_{n+1} \) in \(X \) such that \(f(x_n) = g(x_{n+1}) \). Then
\[
D(gx_n, gx_{n+1}) = D(fx_{n-1}, fx_n) \leq \lambda D(gx_{n-1}, gx_n) + \gamma D(fx_{n-1}, gx_n)
\]
Therefore \((gx_n)\) is a left \(K\)-Cauchy sequence. In a similar manner, we establish that \((gx_n)\) is also a right \(K\)-Cauchy sequence. Hence \((gx_n)\) is a bi-Cauchy sequence. Since \(g(X) \) is bicomplete, there exists \(x^* \in g(X) \) such that \((gx_n)\) converges to \(g(p^*) = x^* \).
Moreover since
\[
D(gx_n, fp^*) = D(fx_{n-1}, fp^*) \leq \lambda D(gx_{n-1}, gp^*) + \gamma D(fx_{n-1}, gp^*)
\]
we get that \(D(gp^*, fp^*) = 0 \). On the other hand, by the same reasoning, it is also clear that \(D(fp^*, gp^*) = 0 \). Hence \(fp^* = gp^* \).
We finish the proof by showing that \(f \) and \(g \) have a unique point of coincidence. For this, assume \(z^* \in X \) is a point such that \(fz^* = gz^* \). Now
\[
D(gz^*, gp^*) = D(fz^*, fp^*) \leq \lambda D(gz^*, gp^*) + \gamma D(fz^*, gp^*)
\]
which gives \(D(gz^*, gp^*) = 0 \). On the other hand, by the same reasoning, it also clear that \(D(gp^*, gz^*) = 0 \). Hence \(gz^* = gp^* \). From Proposition 1, \(f \) and \(g \) have a unique common fixed point.

We now give an example to illustrate Theorems 5, 7.

Example 2. Let \(X = \mathbb{R} \), \(D(x, y) = \max\{x - y, 0\} \) whenever \(x, y \in \mathbb{R} \), \(f(x) = 2x^2 + 4x + 1 \) and \(g(x) = 3x^2 + 6x + 2 \). Then it easy to see that
\[
f(X) = g(X) = [1, \infty) \text{ is bicomplete.}
\]
All the conditions of Theorems 5, 7 are satisfied. Indeed:

- for Theorem 5, take \(k \in \left[\frac{2}{3}, 1\right)\)
- for Theorem 7, take \(\lambda \in \left[\frac{3}{5}, 1\right), \gamma = 0 \).

\(f \) and \(g \) become weakly compatible and we obtain a unique point of coincidence and a unique common fixed point \(-1 = f(-1) = g(-1) \).
Corollary 1. Let \((X, D, \alpha)\) be a \(T_0\)-quasi-pseudometric type space. Suppose that mappings \(f, g : X \to X\) satisfy the contractive condition

\[
D(fx, fy) \leq \alpha[D(gx, gy) + D(fx, fy)] \quad \text{for all } x, y \in X.
\]

where \(0 < \alpha < \min\{1, 1/3\alpha\}\). If the range of \(g\) contains the range of \(f\) and \(g(X)\) is bicomplete, then \(f\) and \(g\) have a unique coincidence point in \(X\). Moreover if \(f\) and \(g\) are weakly compatible, then \(f\) and \(g\) have a unique common fixed point.

Theorem 8. Let \((X, D, \alpha)\) be a \(T_0\)-quasi-pseudometric type space. Suppose that \(f, g : X \to X\) are mappings such that

\[
D(fx, fy) \leq \lambda D(gx, gy) + \gamma D(gx, fy) \quad \text{for all } x, y \in X.
\]

where \(\lambda, \gamma\) are positive constants such that \(\lambda+2\gamma < \min\{1, 1/\alpha\}\). If the range of \(g\) contains the range of \(f\) and \(g(X)\) is bicomplete, then \(f\) and \(g\) have a unique coincidence point in \(X\). Moreover if \(f\) and \(g\) are weakly compatible, then \(f\) and \(g\) have a unique common fixed point.

Corollary 2. Let \((X, D, \alpha)\) be a \(T_0\)-quasi-pseudometric type space. Suppose that mappings \(f, g : X \to X\) satisfy the contractive condition

\[
D(fx, fy) \leq \lambda[D(gx, gy) + D(gx, fy)] \quad \text{for all } x, y \in X.
\]

where \(0 < \lambda < \min\{1, 1/3\alpha\}\). If the range of \(g\) contains the range of \(f\) and \(g(X)\) is bicomplete, then \(f\) and \(g\) have a unique coincidence point in \(X\). Moreover if \(f\) and \(g\) are weakly compatible, then \(f\) and \(g\) have a unique common fixed point.

References

Yaé Ulrich Gaba
Department of Mathematics and Applied Mathematics,
University of Cape Town
Rondebosch 7701, South Africa
e-mail: gabayae2@gmail.com

Received on 14.08.2015 and, in revised form, on 13.04.2016.