Ahu Acikgoz, Takashi Noiri and Nihal Tas

CONTRA \((m_X, m_Y)\)-SEMICONtinuous FUNCTIONS IN \(m\)-SPACES

Abstract. In this paper, we introduce the notion of contra \((m_X, m_Y)\)-semicontinuous functions between \(m\)-spaces. We obtain many characterizations of these functions and deal with decompositions of the functions and other related functions.

Key words: contra \((m_X, m_Y)\)-semicontinuity, \(m_X\)-semi-closed set, \(m_X\)-semi-open set, minimal structure, minimal space.

AMS Mathematics Subject Classification: 54C10, 54C08, 54D10.

1. Introduction

Generalizations of open sets in a topological space: \(\alpha\)-sets [8], preopen sets [3], semi-open sets [1] and \(\beta\)-open sets etc are very important for generalizing continuity in topological spaces. Various generalizations of continuity are defined and investigated by many authors. As a generalization of the topology, Maki [2] define the notion of minimal structures. A subfamily \(m\) of the power set \(P(X)\) on a nonempty set \(X\) is called a minimal structure [2] if \(\emptyset \in m\) and \(X \in m\). The pair \((X, m)\) is called a minimal space. The elements of \(m\) are said to be \(m\)-open. Recently, several generalizations of \(m\)-open sets have been defined and investigated in [4, 5, 6] and [15]. Quite recently, Sengul and Rosas [14] introduced the notion of contra \((m_X, m_Y)\)-continuity between \(m\)-spaces.

The purpose of the present paper is to introduce and study the notion of contra \((m_X, m_Y)\)-semicontinuous functions between \(m\)-spaces. In Section 3, we obtain many characterizations of contra \((m_X, m_Y)\)-semicontinuity. In Section 4, we deal with decompositions of contra \((m_X, m_Y)\)-semicontinuity and other related functions. The last section gives some properties of strongly \(S - m_X\)-closed spaces.
2. Preliminaries

Definition 1 ([2, 11]). A subfamily m_X of the power set $P(X)$ of a nonempty set X is called a minimal structure (briefly, m-structure) on X if $\emptyset \in m_X$ and $X \in m_X$. The pair (X, m_X) is called a minimal space (briefly, m-space). A member of m_X is said to be m_X-open and the complement of an m_X-open set is said to be m_X-closed.

Definition 2 ([2, 11]). Let (X, m_X) be a minimal space. For a subset A of X, the m_X-closure of A and the m_X-interior of A are defined as follows:

1. $m_X - \text{Cl}(V) = \bigcap \{F : A \subseteq F, X - F \in m_X\}$.
2. $m_X - \text{Int}(V) = \bigcup \{U : U \subseteq A, U \in m_X\}$.

Lemma 1 ([2, 11]). Let (X, m_X) be a minimal space and $A, B \subseteq X$. Then the followings hold:

1. $m_X - \text{Cl}(\emptyset) = \emptyset$, $m_X - \text{Cl}(X) = X$.
2. $m_X - \text{Int}(\emptyset) = \emptyset$, $m_X - \text{Int}(X) = X$.
3. If $X - A \in m_X$, then $m_X - \text{Cl}(A) = A$.
4. If $A \in m_X$, then $m_X - \text{Int}(A) = A$.
5. $A \subseteq m_X - \text{Cl}(A)$, $m_X - \text{Int}(A) \subseteq A$.
6. $m_X - \text{Cl}(X - A) = X - (m_X - \text{Int}(A))$.
7. $m_X - \text{Int}(X - A) = X - (m_X - \text{Cl}(A))$.
8. $m_X - \text{Cl}(m_X - \text{Cl}(A)) = m_X - \text{Cl}(A)$.
9. $m_X - \text{Int}(m_X - \text{Int}(A)) = m_X - \text{Int}(A)$.
10. If $A \subseteq B$, then $m_X - \text{Cl}(A) \subseteq m_X - \text{Cl}(B)$.
11. If $A \subseteq B$, then $m_X - \text{Int}(A) \subseteq m_X - \text{Int}(B)$.

Definition 3 ([2]). Let (X, m_X) be a minimal space. The m-structure m_X is said to have property \mathcal{B} if the union of any family of subsets belonging to m_X belongs to m_X.

Lemma 2 ([11]). Let (X, m_X) be a minimal space and m_X satisfy property of \mathcal{B}. For $A \subseteq X$, the followings hold:

1. $A \in m_X$ if and only if $m_X - \text{Int}(A) = A$.
2. A is m_X-closed if and only if $m_X - \text{Cl}(A) = A$.
3. $m_X - \text{Int}(A) \in m_X$.
4. $m_X - \text{Cl}(A)$ is m_X-closed.

Lemma 3 ([11]). Let (X, m_X) be a minimal space and $A \subseteq X$. Then $x \in m_X - \text{Cl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m_X$ such that $x \in U$.

Definition 4. Let (X, m_X) be a minimal space. A subset A of X is said to be m_X-clopopen if it is m_X-open and m_X-closed.

Definition 5. Let (X, m_X) be a minimal space. A subset A of X is called
(1) an m_X-open set [6] if $A \subseteq m_X - \text{Int}(m_X - \text{Cl}(m_X - \text{Int}(A)))$.

(2) an m_X-preopen set [4, 13] if $A \subseteq m_X - \text{Int}(m_X - \text{Cl}(A))$.

(3) a β- m_X-open set [7, 15] if $A \subseteq m_X - \text{Cl}(m_X - \text{Int}(m_X - \text{Cl}(A)))$.

Definition 6 ([5]). Let (X, m_X) be a minimal space. A subset A of X is called an m_X-semiopen set if $A \subseteq m_X - \text{Cl}(m_X - \text{Int}(A))$. The complement of an m_X-semiopen set is called an m_X-semiclosed set. The family of all m_X-semiopen sets in X is denoted by $\text{MSO}(X)$.

Lemma 4 ([5]). Let (X, m_X) be a minimal space and $A \subseteq X$. Then

(1) A is an m_X-semiclosed set if and only if $m_X - \text{Int}(m_X - \text{Cl}(A)) \subseteq A$.

(2) $\text{MSO}(X)$ is a minimal structure with property \mathcal{B}.

Definition 7 ([5]). Let (X, m_X) be a minimal space and $A \subseteq X$. The m_X-semi-closure of A and the m_X-semi-interior of A are defined as follows:

(1) $m_Xs\text{Cl}(A) = \bigcap\{F : A \subseteq F, F$ is m_X-semiclosed in $X\}$.

(2) $m_Xs\text{Int}(A) = \bigcup\{U : U \subseteq A, U$ is m_X-semiopen in $X\}$.

Lemma 5. Let (X, m_X) be a minimal space. For a subset of A of X, the following hold:

(1) A is m_X-semiopen if and only if $m_Xs\text{Int}(A) = A$.

(2) A is m_X-semiclosed if and only if $m_Xs\text{Cl}(A) = A$.

Proof. This follows easily from Lemmas 2 and 4. ■

Definition 8 ([13]). Let (X, m_X) be a minimal space. Then a subset A of X is said to be m_X-gs-closed if $m_Xs\text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and $U \in m_X$.

Definition 9 ([13]). Let (X, m_X) be a minimal space. Then $A \subseteq X$ is called an m_X-regular open set if $A = m_X - \text{Int}(m_X - \text{Cl}(A))$. Also $A \subseteq X$ is called an m_X-regular closed set if $X - A$ is m_X-regular open.

If A is m_X-closed, then $m_X - \text{cl}(A) = A$ but the converse is not always true. Therefore, m_X-regular open (resp. m_X-regular closed) is not always m_X-open (resp. m_X-closed).

Definition 10 ([12]). A subset U of a nonempty set X with a minimal structure m_X is said to be m_X-compact relative to (X, m_X) if any cover of U by m_X-open sets has a finite subcover.

Definition 11 ([14]). Let (X, m_X) and (Y, m_Y) be two minimal spaces. Then a function $f : (X, m_X) \to (Y, m_Y)$ is said to be contra (m_X, m_Y)-continuous if $f^{-1}(V) = m_X - \text{Cl}(f^{-1}(V))$ for every m_Y-open set V of Y.
3. Contra \((m_X, m_Y)\)-semi continuous functions

In this section, we introduce the concept of a contra \((m_X, m_Y)\)-semi continuous function between \(m\)-spaces and investigate some characterizations of this continuity.

Definition 12. Let \((X, m_X)\) and \((Y, m_Y)\) be two minimal spaces. Then a function \(f : (X, m_X) \to (Y, m_Y)\) is said to be contra \((m_X, m_Y)\)-semi continuous if \(f^{-1}(V)\) is \(m_X\)-semiclosed in \(X\) for every \(m_Y\)-open set \(V\) of \(Y\).

Lemma 6. Every contra \((m_X, m_Y)\)-continuous function is contra \((m_X, m_Y)\)-semi continuous.

Proof. Let \(f : (X, m_X) \to (Y, m_Y)\) be a contra \((m_X, m_Y)\)-continuous function and \(V\) be any \(m_Y\)-open set of \(Y\). Then \(m_X - \text{Cl}(f^{-1}(V)) = f^{-1}(V)\) and \(m_X - \text{Int}(m_X - \text{Cl}(f^{-1}(V))) = m_X - \text{Int}f^{-1}(V) \subseteq f^{-1}(V)\). Therefore, Lemma 4, \(f^{-1}(V)\) is \(m_X\)-semiclosed and \(f\) is contra \((m_X, m_Y)\)-semi continuous. \(\blacksquare\)

Remark 1. The converse of Lemma 6 is not always true as the following example shows.

Example 1. Let \(X = \{a, b, c\}\) and \(m_{X_1}, m_{X_2}\) be two minimal structures on \(X\) as follows:

\[
\begin{align*}
m_{X_1} &= \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}, \\
m_{X_2} &= \{\emptyset, X, \{c\}\}.
\end{align*}
\]

Define a function \(f : (X, m_{X_1}) \to (X, m_{X_2})\) as follows:

\[
\begin{align*}
f(a) &= b, \\
f(b) &= c, \\
f(c) &= a.
\end{align*}
\]

Then \(f\) is contra \((m_X, m_Y)\)-semi continuous, but it is not contra \((m_X, m_Y)\)-continuous.

Theorem 1. A function \(f : (X, m_X) \to (Y, m_Y)\) is contra \((m_X, m_Y)\)-semi continuous if and only if \(f : (X, \text{MSO}(X)) \to (Y, m_Y)\) is contra \((m_X, m_Y)\)-continuous.

Proof. Necessity. Let \(f : (X, m_X) \to (Y, m_Y)\) be contra \((m_X, m_Y)\)-semi continuous and \(V\) be any \(m_Y\)-open set of \(Y\). Then, by hypothesis \(f^{-1}(V)\) is \(m_X\)-semiclosed in \(X\) and, by Lemma 5, \(f^{-1}(V) = m_X s\text{Cl}(f^{-1}(V))\). Therefore, \(f : (X, \text{MSO}(X)) \to (Y, m_Y)\) is contra \((m_X, m_Y)\)-continuous.

Sufficiency. Let \(V\) be any \(m_Y\)-open set of \(Y\). By hypothesis, \(f^{-1}(V) = m_X s\text{Cl}(f^{-1}(V))\) and, by Lemma 5, \(f^{-1}(V) = m_X\)-semi-closed. Therefore, \(f : (X, m_X) \to (Y, m_Y)\) is contra \((m_X, m_Y)\)-semi continuous. \(\blacksquare\)
Definition 13. Let \((X, m_X)\) and \((Y, m_Y)\) be two minimal spaces. Then a function \(f : (X, m_X) \to (Y, m_Y)\) is said to be contra \((m_X, m_Y)\)-semicontinuous at \(x \in X\) if for each \(m_Y\)-closed \(V\) of \(Y\) containing \(f(x)\), there exists an \(m_X\)-semiopen set \(U\) of \(X\) containing \(x\) such that \(f(U) \subseteq V\).

Theorem 2. Let \((X, m_X)\), \((Y, m_Y)\) be two minimal spaces. A function \(f : (X, m_X) \to (Y, m_Y)\) is contra \((m_X, m_Y)\)-semi continuous if and only if \(f\) is contra \((m_X, m_Y)\)-semicontinuous at each point \(x \in X\).

Proof. Necessity. Let \(x \in X\) and \(V\) be any \(m_Y\)-closed set of \(Y\) containing \(f(x)\). Then \(Y - V\) is \(m_Y\)-open. By hypothesis, \(f^{-1}(Y - V)\) is an \(m_X\)-semiopen subset of \(X\). Thus \(f^{-1}(V)\) is \(m_Y\)-semiopen. Put \(U = f^{-1}(V)\). Then \(x \in U\) and \(f(U) \subseteq V\). This shows that \(f\) is contra \((m_X, m_Y)\)-semicontinuous at each point \(x \in X\).

Sufficiency. Let \(V\) be any \(m_Y\)-open set of \(Y\) and \(x \in f^{-1}(Y - V)\). Then \(f(x) \in Y - V\) and \(Y - V\) is \(m_Y\)-closed. By hypothesis, there exists an \(m_X\)-semiopen set \(U_x\) containing \(x\) such that \(f(U_x) \subseteq Y - V\); hence \(x \in U_x \subseteq f^{-1}(Y - V)\). Therefore, we have \(\cup\{U_x : x \in f^{-1}(Y - V)\} = f^{-1}(Y - V)\). Since \(MSO(X)\) satisfies property \(B\), \(f^{-1}(Y - V)\) is \(m_X\)-semiopen and \(f^{-1}(V)\) is \(m_X\)-semiclosed in \(X\). This shows that \(f\) contra \((m_X, m_Y)\)-semi continuous.

Theorem 3. Let \((X, m_X)\) and \((Y, m_Y)\) be two minimal spaces. For a function \(f : (X, m_X) \to (Y, m_Y)\), the following statements are equivalent:

1. \(f\) is contra \((m_X, m_Y)\)-semi continuous;
2. \(f^{-1}(V)\) is \(m_X\)-semiopen in \(X\) for every \(m_Y\)-closed subset \(V\) of \(Y\);
3. \(m_X - \text{Int}(m_X - \text{Cl}(f^{-1}(V))) = m_X - \text{Int}(f^{-1}(V))\) for every \(m_Y\)-open subset \(V\) of \(Y\);
4. \(m_X - \text{Cl}(m_X - \text{Int}(f^{-1}(V))) = m_X - \text{Cl}(f^{-1}(V))\) for every \(m_Y\)-closed subset \(V\) of \(Y\).

Proof. (1) \(\Rightarrow\) (2). Let \(V\) be any \(m_Y\)-closed set of \(Y\). Then \(Y - V\) is \(m_Y\)-open. Using the hypothesis, \(f^{-1}(Y - V) = X - f^{-1}(V)\) is \(m_X\)-semiclosed in \(X\). As a consequence, \(f^{-1}(V)\) is \(m_X\)-semiopen in \(X\).

(2) \(\Rightarrow\) (3). Let \(V\) be any \(m_Y\)-open set of \(Y\). Then \(Y - V\) is \(m_Y\)-closed. By (2), \(f^{-1}(Y - V)\) is \(m_X\)-semiopen and \(f^{-1}(V)\) is \(m_X\)-semiclosed in \(X\). By Lemma 4, \(m_X - \text{Int}(m_X - \text{Cl}(f^{-1}(V))) \subseteq f^{-1}(V)\) and hence by Lemma 1 \(m_X - \text{Int}(m_X - \text{Cl}(f^{-1}(V))) \subseteq m_X - \text{Int}(f^{-1}(V)) \subseteq m_X - \text{Int}(m_X - \text{Cl}(f^{-1}(V)))\). Therefore, we obtain (3).

(3) \(\Rightarrow\) (4). It is clear from the complement of (3).

(4) \(\Rightarrow\) (1). Let \(V\) be any \(m_Y\)-open subset of \(Y\). Then \(Y - V\) is \(m_Y\)-closed. By hypothesis,

\[
m_X - \text{Cl}(m_X - \text{Int}(f^{-1}(Y - V))) = m_X - \text{Cl}(f^{-1}(Y - V)).
\]
Then we obtain that
\[m_X - \text{Int}(m_X - \text{Cl}(f^{-1}(V))) = m_X - \text{Int}(f^{-1}(V)) \subseteq f^{-1}(V). \]

By Lemma 4, \(f^{-1}(V) \) is \(m_X \)-semiclosed in \(X \).

Theorem 4. Let \((X, m_X), (Y, m_Y)\) be two minimal spaces and \(m_Y \) satisfy property \(\mathcal{B} \). For a function \(f : (X, m_X) \rightarrow (Y, m_Y) \), the following statements are equivalent:

1. \(f \) is contra \((m_X, m_Y)\)-semi continuous;
2. \(f^{-1}(B) \) is \(m_X \)-semiopen in \(X \) for every \(m_Y \)-closed set \(B \) in \(Y \);
3. \(f^{-1}(B) \subseteq m_X - \text{Cl}(m_X - \text{Int}(f^{-1}(m_Y - \text{Cl}(B)))) \) for every subset \(B \) in \(Y \);
4. \(m_X - \text{Int}(m_X - \text{Cl}(f^{-1}(m_Y - \text{Int}(B)))) \subseteq f^{-1}(B) \) for every subset \(B \) in \(Y \);
5. \(A \subseteq m_X - \text{Cl}(m_X - \text{Int}(f^{-1}(m_Y - \text{Cl}(f(A)))))) \) for every subset \(A \) in \(X \).

Proof. (1) \(\Leftrightarrow \) (2). It is obvious from Theorem 3.

(2) \(\Rightarrow \) (3). Let \(B \subseteq Y \). Then \(m_Y - \text{Cl}(B) \) is an \(m_Y \)-closed set in \(Y \) since \(m_Y \) satisfies property \(\mathcal{B} \). By (2), \(f^{-1}(m_Y - \text{Cl}(B)) \) is \(m_X \)-semiopen in \(X \). Therefore, \(f^{-1}(m_Y - \text{Cl}(B)) \subseteq m_X - \text{Cl}(m_X - \text{Int}(f^{-1}(m_Y - \text{Cl}(B)))) \). As a consequence, \(f^{-1}(B) \subseteq f^{-1}(m_Y - \text{Cl}(B)) \subseteq m_X - \text{Cl}(m_X - \text{Int}(f^{-1}(m_Y - \text{Cl}(B)))) \).

(3) \(\Leftrightarrow \) (4). It is clear from the complement.

(4) \(\Rightarrow \) (5). Let \(A \subseteq X \). Then \(f(A) \subseteq Y \). By (3), \(A \subseteq f^{-1}(f(A)) \subseteq m_X - \text{Cl}(m_X - \text{Int}(f^{-1}(m_Y - \text{Cl}(f(A))))) \).

(5) \(\Rightarrow \) (2). Let \(B \) be any \(m_Y \)-closed set in \(Y \). Then \(f^{-1}(B) \subseteq X \). By (5), \(f^{-1}(B) \subseteq m_X - \text{Cl}(m_X - \text{Int}(f^{-1}(m_Y - \text{Cl}(f^{-1}(B)))))) \subseteq m_X - \text{Cl}(m_X - \text{Int}(f^{-1}(m_Y - \text{Cl}(B)))) \). Then we obtain

\[f^{-1}(B) \subseteq m_X - \text{Cl}(m_X - \text{Int}(f^{-1}(B))) \]

since \(B \) is \(m_Y \)-closed in \(Y \). As a consequence, \(f^{-1}(B) \) is \(m_X \)-semiopen in \(X \).

Theorem 5. Let \((X, m_X), (Y, m_Y)\) be two minimal spaces and \(m_X, m_Y \) satisfy property \(\mathcal{B} \). For a function \(f : (X, m_X) \rightarrow (Y, m_Y) \), the following statements are equivalent:

1. \(f \) is contra \((m_X, m_Y)\)-semi continuous;
2. \(f^{-1}(V) \) is \(m_X \)-semiopen in \(X \) for every \(m_Y \)-closed subset \(V \) of \(Y \);
3. There exists an \(m_X \)-semiclosed set \(U \) such that \(x \notin U \) and \(f^{-1}(V) \subseteq U \) for each \(x \in X \) and each \(m_Y \)-open \(V \) with \(f(x) \notin V \).
(4) \(f^{-1}(F) \subseteq m_XsInt(f^{-1}(F)) \) for any \(m_Y \)-closed set \(F \) in \(Y \);
(5) \(m_XsCl(f^{-1}(F)) \subseteq f^{-1}(F) \) for any \(m_Y \)-open set \(F \) in \(Y \);
(6) \(m_XsCl(f^{-1}(m_Y - Int(F))) \subseteq f^{-1}(m_Y - Int(F)) \) for any subset \(F \subseteq Y \);
(7) \(f^{-1}(m_Y - Cl(F)) \subseteq m_XsInt(f^{-1}(m_Y - Cl(F))) \) for any subset \(F \subseteq Y \).

Proof. (1) \(\Leftrightarrow \) (2) is already shown in Theorem 3.

(1) \(\Rightarrow \) (3). Let \(x \in X \) and \(V \) be any \(m_Y \)-open subset of \(Y \) with \(f(x) \notin V \). Then \(f^{-1}(V) \) is \(m_X \)-semiclosed. Put \(U = f^{-1}(V) \). Then \(f^{-1}(V) \subseteq U \) and \(x \notin U \).

(3) \(\Rightarrow \) (1). Let \(V \) be any \(m_Y \)-open subset of \(Y \). For each \(x \in f^{-1}(Y - V) \), \(f(x) \notin V \). By hypothesis, there exists an \(m_X \)-semiclosed set \(U_x \) such that \(x \notin U_x \) and \(f^{-1}(V) \subseteq U_x \). Then \(x \in X - U_x \subseteq X - f^{-1}(V) = f^{-1}(Y - V) \).

We obtain

\[
\bigcup_{x \in f^{-1}(Y - V)} \{ x \} \subseteq \bigcup_{x \in f^{-1}(Y - V)} (X - U_x) \subseteq f^{-1}(Y - V).
\]

Hence \(f^{-1}(Y - V) = \bigcup_{x \in f^{-1}(Y - V)} (X - U_x) \) is \(m_X \)-semiopen. Thus \(f^{-1}(V) \) is \(m_X \)-semiclosed. As a consequence, \(f \) is contra \((m_X, m_Y)\)-semi continuous.

(1) \(\Rightarrow \) (4). Let \(F \) be any \(m_Y \)-closed subset of \(Y \). For each \(x \in f^{-1}(F) \), \(f(x) \in F \). By Theorem 2, there exists an \(m_X \)-semiopen set \(U \) such that \(x \in U \) and \(f(U) \subseteq F \). Since \(x \in U \subseteq f^{-1}(F) \), we obtain \(x \in m_XsInt(f^{-1}(F)) \).

As a consequence, \(f^{-1}(F) \subseteq m_XsInt(f^{-1}(F)) \).

(4) \(\Rightarrow \) (5). It is obvious from taking the complement of (4).

(5) \(\Rightarrow \) (6). Let \(F \) be any subset of \(Y \). Since \(m_Y \) satisfies property \(\mathcal{B} \), \(m_Y - Int(F) \) is an \(m_Y \)-open subset of \(Y \) and by (5), we obtain

\[
m_XsCl(f^{-1}(m_Y - Int(F))) \subseteq f^{-1}(m_Y - Int(F)).
\]

(6) \(\Rightarrow \) (7). It is clear from the complement of (6).

(7) \(\Rightarrow \) (1). Let \(V \) be any \(m_Y \)-open subset of \(Y \). Then \(Y - V \) is \(m_Y \)-closed. By (7), \(X - f^{-1}(V) = f^{-1}(Y - V) = f^{-1}(m_Y - Cl(Y - V)) \subseteq m_XsInt(f^{-1}(m_Y - Cl(Y - V))) = m_XsInt(f^{-1}(Y - V)) = X - m_XsCl(f^{-1}(V)) \). Therefore, \(m_X - sCl(f^{-1}(V)) \subseteq f^{-1}(V) \) and hence \(m_X - sCl(f^{-1}(V)) = f^{-1}(V) \). Since \(m_X \) satisfies property \(\mathcal{B} \), \(f^{-1}(V) \) is \(m_X \)-semiclosed in \(X \). As a consequence, \(f \) is contra \((m_X, m_Y)\)-semi continuous. \(\blacksquare \)

4. **Decompositions of contra \((m_X, m_Y)\)-semincontinuity**

In this section, we obtain decompositions of contra \((m_X, m_Y)\)-semincontinuous functions and other related functions.
Definition 14. Let $\langle X, m_X \rangle$ be a minimal space. A subset A of X is called

1. an m_X-semi-regular set if A is both m_X-semiopen and m_X-semiclosed.
2. an m_X-B-set if $A = U \cap V$, where $U \in m_X$ and V is m_X-semiclosed.

Lemma 7. Let $\langle X, m_X \rangle$ be a minimal space and $A \subseteq X$. Then the following conditions are equivalent:

1. A is m_X-semi-regular;
2. A is both βm_X-open and m_X-semiclosed.

Proof. It is obvious by Lemma 4.

Remark 2. A βm_X-open set and an m_X-semiclosed set are independent of each other as the following examples show.

Example 2. Let $X = \{a, b, c\}$ and $m_X = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{a, b\}$ is an m_X-open set and hence βm_X-open, but it is not an m_X-semiclosed set.

Example 3. Let $X = \{a, b, c\}$ and $m_X = \{\emptyset, X, \{a\}, \{c\}, \{b, c\}\}$. Then $A = \{a, b\}$ is an m_X-closed set and hence m_X-semiclosed set, but it is not a βm_X-open set.

Lemma 8. Let $\langle X, m_X \rangle$ be a minimal space and m_X satisfy property \mathcal{B}. Then for a subset A of X, the following conditions are equivalent:

1. A is both m_X-open and m_X-semiclosed;
2. A is both αm_X-open and m_X-semiclosed;
3. A is both m_X-preopen and m_X-semiclosed.

Proof. It is clear.

Remark 3. An m_X-preopen set and an m_X-semiclosed set are independent of each other as the following example shows.

Example 4. Consider Example 2, then the set $A = \{a, b\}$ is an m_X-preopen set, but it is not m_X-semiclosed. Also in Example 3, the set A is an m_X-semiclosed set, but it is not an m_X-preopen set.

Lemma 9. Let $\langle X, m_X \rangle$ be a minimal space and $A \subseteq X$. If A is both βm_X-open and m_X-closed, then it is m_X-regular closed.

Proof. It is an immediate result.

Remark 4. A βm_X-open set and an m_X-closed set are independent of each other as the following example shows.
Example 5. Consider Example 2, then the set $A = \{a, b\}$ is a βm_X-open set, but it is not an m_X-closed set. Also in Example 3, the set A is an m_X-closed set, but it is not a βm_X-open set.

Definition 15. Let (X, m_X) and (Y, m_Y) be two minimal spaces. Then a function $f : (X, m_X) \to (Y, m_Y)$ is said to be

1. (m_X, m_Y)-perfectly continuous if $f^{-1}(V)$ is m_X-clopen in X for every m_Y-open set V of Y,
2. (m_X, m_Y)-completely continuous if $f^{-1}(V)$ is m_X-regular open in X for every m_Y-open set V of Y,
3. (m_X, m_Y)-semi-regular continuous (briefly, (m_X, m_Y)-SR-continuous) if $f^{-1}(V)$ is m_X-semi-regular open in X for every m_Y-open set V of Y,
4. (m_X, m_Y)-regular closed continuous (briefly, (m_X, m_Y)-RC-continuous) if $f^{-1}(V)$ is m_X-regular closed in X for every m_Y-open set V of Y,
5. (m_X, m_Y)-B-continuous if $f^{-1}(V)$ is an m_X-B-set in X for every m_Y-open set V of Y.

Definition 16 ([7]). Let m_X, m_Y be two minimal structures. A function $f : (X, m_X) \to (Y, m_Y)$ is said to be $M - \beta$-continuous if $f^{-1}(V)$ is βm_X-open in X for every m_Y-open set V of Y.

Theorem 6. For a function $f : (X, m_X) \to (Y, m_Y)$, the following statements are equivalent:

1. f is (m_X, m_Y)-SR-continuous;
2. f is $M - \beta$-continuous and contra (m_X, m_Y)-semi continuous.

Proof. It is an immediate result of Lemma 7.

Definition 17 ([4]). Let m_X, m_Y be two minimal structures. A function $f : (X, m_X) \to (Y, m_Y)$ is said to be M-pre continuous if $f^{-1}(V)$ is m_X-preopen in X for every m_Y-open set V of Y.

Theorem 7. If a function $f : (X, m_X) \to (Y, m_Y)$ is M-pre continuous and contra (m_X, m_Y)-semi continuous, it is (m_X, m_Y)-completely continuous.

Proof. It is clear from the fact that every m_X-preopen and m_X-semiclosed set is m_X-regular open.

Theorem 8. If a function $f : (X, m_X) \to (Y, m_Y)$ is $M - \beta$-continuous and contra (m_X, m_Y)-continuous, it is (m_X, m_Y)-RC-continuous.

Proof. It is obvious from Lemma 9.
Definition 18. A function \(f : (X, m_X) \to (Y, m_Y) \) is said to be contra \((m_X, m_Y)\)-gs-continuous if \(f^{-1}(V) \) is \(m_X \)-gs-closed in \(X \) for every \(m_Y \)-open set \(V \) of \(Y \).

Theorem 9. For a function \(f : (X, m_X) \to (Y, m_Y) \), the following statements are equivalent:

1. \(f \) is contra \((m_X, m_Y)\)-semi continuous;
2. \(f \) is \((m_X, m_Y)\)-B-continuous and contra \((m_X, m_Y)\)-gs-continuous.

Proof. (1) \(\Rightarrow \) (2). It is clear.

(2) \(\Rightarrow \) (1). Let \(V \) be any \(m_Y \)-open set of \(Y \). Since \(f \) is \((m_X, m_Y)\)-B-continuous, \(f^{-1}(V) = U \cap F \), where \(U \in m_X \) and \(F \) is \(m_X \)-semiclosed in \(X \). Then \(f^{-1}(V) \subseteq U \) and \(U \in m_X \). \(f^{-1}(V) \) is \(m_X \)-gs-closed and since \(f \) is contra \((m_X, m_Y)\)-gs-continuous, \(m_X \) \(sCl(f^{-1}(V)) = m_X - Int(m_X - Cl(m_X \ sCl(f^{-1}(V)))) \subseteq m_X - Int(m_X - Cl(m_X \ sCl(f^{-1}(V)))) \subseteq m_X \ sCl(f^{-1}(V)) \subseteq U \). On the other hand, \(F \) is \(m_X \)-semiclosed and by Lemma 4 \(m_X - Int(m_X - Cl(f^{-1}(V))) \subseteq m_X - Int(m_X - Cl(f^{-1}(V))) \subseteq m_X - Int(m_X - Cl(f^{-1}(V))) \subseteq U \). As a consequence, \(f^{-1}(V) \) is \(m_X \)-semiclosed.

Remark 5. The notions of \((m_X, m_Y)\)-B-continuity and contra \((m_X, m_Y)\)-gs-continuity are independent of each other as shown by the following example.

Example 6. Let \(X = \{1, 2\} \), \(Y = \{a, b\} \), \(m_X = \{\emptyset, X, \{2\}\} \) and \(m_Y = \{\emptyset, Y\} \). Let \(f : (X, m_X) \to (X, m_X) \) be the identity function. Then \(f \) is \((m_X, m_Y)\)-B-continuous but it is not contra \((m_X, m_Y)\)-gs-continuous. Also, let \(g : (Y, m_Y) \to (X, m_X) \) be a function defined as follows:

\[
g(a) = 1, \quad g(b) = 2.
\]

Then \(g \) is contra \((m_X, m_Y)\)-gs-continuous, but it is not \((m_X, m_Y)\)-B-continuous.

Corollary 1. For a function \(f : (X, m_X) \to (Y, m_Y) \), the following statements are equivalent:

1. \(f \) is \((m_X, m_Y)\)-SR-continuous;
2. \(f \) is \(M-\beta \)-continuous, \((m_X, m_Y)\)-B-continuous and contra \((m_X, m_Y)\)-gs-continuous.

Proof. It is obvious from Theorems 6 and 9.

Remark 6. The function \(f : (X, m_X) \to (X, m_X) \) in Example 6 is \((m_X, m_Y)\)-pre continuous, but it is not contra \((m_X, m_Y)\)-gs-continuous. Also, the function \(g : (Y, m_Y) \to (X, m_X) \) in Example 6 is \((m_X, m_Y)\)-pre continuous, but it is not \((m_X, m_Y)\)-B-continuous.
Remark 7. We obtain the following diagram which shows the relationships between contra \((m_X, m_Y)\)-semicontinuous functions and other related functions.

\[
\text{DIAGRAM}
\begin{align*}
&\text{m-regular closed } C \\
\downarrow & \\
&\text{m-complete } C \rightarrow M\text{-pre } C \rightarrow M - \beta - C \rightarrow \text{contra-}m - C \\
\uparrow & \\
&\text{m-perfect } C \rightarrow \text{m-semi-regular } C \rightarrow \text{contra } m\text{-semi } C \\
\downarrow & \\
&\text{m-B-C } \rightarrow \text{contra-mgs-C}
\end{align*}
\]

In the diagram, \(C\) denotes continuity and \(m\) means \((m_X, m_Y)\).

5. **Strongly \(S - m_X\)-closed spaces**

Definition 19. A minimal space \((X, m_X)\) is said to be

1. \(m_X\)-semi-compact if there exists a finite subset \(J\) of \(I\) such that \(X = \bigcup\{U_i : i \in J\}\) for every \(m_X\)-semiopen cover \(\{U_i : i \in I\}\) of \(X\),
2. \(m_X\)-s-closed if there exists a finite subset \(J\) of \(I\) such that \(X = \bigcup\{m_Xs\text{Cl}(U_i) : i \in J\}\) for every \(m_X\)-semiopen cover \(\{U_i : i \in I\}\) of \(X\),
3. \(m_X\)-S-closed if there exists a finite subset \(J\) of \(I\) such that \(X = \{m_X - \text{Cl}(U_i) : i \in J\}\) for every \(m_X\)-semiopen cover \(\{U_i : i \in I\}\) of \(X\),
4. \([14]\) \(m_X\)-nearly compact if there exists a finite subset \(J\) of \(I\) such that \(X = \bigcup\{m_X - \text{Int}(m_X - \text{Cl}(U_i)) : i \in J\}\) for every \(m_X\)-open cover \(\{U_i : i \in I\}\) of \(X\),
5. \([9]\) \(m_X\)-closed if there exists a finite subset \(J\) of \(I\) such that \(X = \bigcup\{m_X - \text{Cl}(U_i) : i \in J\}\) for every \(m_X\)-open cover \(\{U_i : i \in I\}\) of \(X\),
6. \([10]\) strongly \(S\)-\(m_X\)-closed if every \(m_X\)-closed cover of \(X\) has a finite subcover,
7. \(m_X\)-mildly compact if every \(m_X\)-clopen cover of \(X\) has a finite subcover.

We obtain the following diagram:

\[
\text{DIAGRAM}
\begin{align*}
&m_X\text{-semi-compact } \rightarrow m_X\text{-s-closed } \rightarrow m_X\text{-S-closed strongly } S\text{-}m_X\text{-closed} \\
\downarrow & \quad \downarrow \quad \downarrow \\
&m_X\text{-compact } \rightarrow m_X\text{-nearly compact } \rightarrow m_X\text{-closed } \rightarrow m_X\text{-mildly compact}
\end{align*}
\]
Theorem 10. Let $(X, m_X), (Y, m_Y)$ be two minimal spaces and a function $f : (X, m_X) \to (Y, m_Y)$ be a surjection. If one of the following statements holds, then (Y, m_Y) is strongly S_{m_Y}-closed.

(1) f is contra (m_X, m_Y)-semi continuous and (X, m_X) is m_X-semi-compact,

(2) f is (m_X, m_Y)-perfectly continuous and (X, m_X) is m_X-mildly compact.

Proof. Suppose (2) holds: Let $\{U_i : i \in I\}$ be an m_Y-closed cover of Y. $\{f^{-1}(U_i) : i \in I\}$ is an m_X-clopen cover of X since f is (m_X, m_Y)-perfectly continuous. Then there exists a finite $J \subseteq I$ such that $X = \bigcup_{i \in J} f^{-1}(U_i)$ as (X, m_X) is m_X-mildly compact. Hence $Y = \bigcup_{i \in J} U_i$. As a consequence, (Y, m_Y) is strongly S_{m_Y}-closed. ■

Acknowledgement. The authors acknowledge the reviewers and the editors for their valuable suggestions and constructive comments that helped to improve the paper.

References

Ahu Acikgoz
Department of Mathematics
Balikesir University
10145 Balikesir, Turkey
e-mail: ahuacikgoz@gmail.com

Takashi Noiri
2949-1, Shiokita-cho, Hinagu
Yatsushiro-shi, Kumamoto-ken
869-5142, Japan
e-mail: t.noiri@nifty.com

Nihal Tas
Department of Mathematics
Balikesir University
10145 Balikesir, Turkey
e-mail: nihalarabacioglu@hotmail.com

Received on 03.12.2016 and, in revised form, on 07.03.2017.