ARTION KASHURI AND ROZANA LIKO

HERMITE-HADAMARD TYPE INEQUALITIES FOR MT$_m$-PREINVEX FUNCTIONS

ABSTRACT. In the present paper, the notion of MT$_m$-preinvex function is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving MT$_m$-preinvex functions along with beta function are given. Moreover, some generalizations of Hermite-Hadamard type inequalities for MT$_m$-preinvex functions via classical integrals and Riemann-Liouville fractional integrals are established. At the end, some applications to special means are given. These results not only extend the results appeared in the literature (see [13]), but also provide new estimates on these types.

KEY WORDS: Hermite-Hadamard type inequality, MT-convex function, Hölder’s inequality, power mean inequality, fractional integral, m-invex, P-function.

AMS Mathematics Subject Classification: 26A33, 26A51, 33B15, 26B25, 26D07, 26D10, 26D15.

1. Introduction and preliminaries

The following notations are used throughout this paper. We use I to denote an interval on the real line $\mathbb{R} = (-\infty, +\infty)$ and I° to denote the interior of I. For any subset $K \subseteq \mathbb{R}^n$, K° is used to denote the interior of K. \mathbb{R}^n is used to denote a generic n-dimensional vector space. The nonnegative real numbers are denoted by $\mathbb{R}_0 = [0, +\infty)$. The set of integrable functions on the interval $[a, b]$ is denoted by $L_1[a, b]$.

The following inequality, named Hermite-Hadamard inequality, is one of the most famous inequalities in the literature for convex functions.

Theorem 1. Let $f : I \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ be a convex function on an interval I of real numbers and $a, b \in I$ with $a < b$. Then the following inequality holds:

\[
\frac{f(a) + f(b)}{2} \leq \frac{1}{b - a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2}.
\]
In recent years, various generalizations, extensions and variants of such inequalities have been obtained. For other recent results concerning Hermite-Hadamard type inequalities through various classes of convex functions, (see [9], [13], [6], [21], [5], [11], [10], [4], [17], [3]) and the references cited therein. In (see [19], [14]) and the references cited therein, Tunç and Yildirim defined the following so-called MT-convex function:

Definition 1. A function $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is said to belong to the class of $MT(I)$, if it is nonnegative and for all $x, y \in I$ and $t \in (0, 1)$ satisfies the following inequality:

\[
 f(tx + (1 - t)y) \leq \frac{\sqrt{t}}{2\sqrt{1-t}} f(x) + \frac{\sqrt{1-t}}{2\sqrt{t}} f(y).
\]

Fractional calculus (see [13]) and the references cited therein, was introduced at the end of the nineteenth century by Liouville and Riemann, the subject of which has become a rapidly growing area and has found applications in diverse fields ranging from physical sciences and engineering to biological sciences and economics.

Definition 2. Let $f \in L_1[a,b]$. The Riemann-Liouville integrals $J^\alpha_{a+}f$ and $J^\alpha_{b-}f$ of order $\alpha > 0$ with $a \geq 0$ are defined by

\[
 J^\alpha_{a+}f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t)dt, \quad x > a
\]

and

\[
 J^\alpha_{b-}f(x) = \frac{1}{\Gamma(\alpha)} \int_b^x (t-x)^{\alpha-1} f(t)dt, \quad b > x,
\]

where $\Gamma(\alpha) = \int_0^{+\infty} e^{-u}u^{\alpha-1}du$. Here $J^0_{a+}f(x) = J^0_{b-}f(x) = f(x)$.

In the case of $\alpha = 1$, the fractional integral reduces to the classical integral.

Due to the wide application of fractional integrals, some authors extended to study fractional Hermite-Hadamard type inequalities for functions of different classes (see [13]) and the references cited therein.

Now, let us recall some definitions of various convex functions.

Definition 3 (see [7]). A nonnegative function $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}_+$ is said to be P-function or P-convex, if

\[
 f(tx + (1 - t)y) \leq f(x) + f(y), \quad \forall x, y \in I, \ t \in [0, 1].
\]

Definition 4 (see [1]). A set $K \subseteq \mathbb{R}^n$ is said to be invex with respect to the mapping $\eta : K \times K \rightarrow \mathbb{R}^n$, if $x + t\eta(y, x) \in K$ for every $x, y \in K$ and $t \in [0, 1]$.
Notice that every convex set is invex with respect to the mapping $\eta(y, x) = y - x$, but the converse is not necessarily true. For more details please see (see [1],[20]) and the references therein.

Definition 5 (see [16]). The function f defined on the invex set $K \subseteq \mathbb{R}^n$ is said to be preinvex with respect η, if for every $x, y \in K$ and $t \in [0, 1]$, we have

$$f(x + t\eta(y, x)) \leq (1 - t)f(x) + tf(y).$$

The concept of preinvexity is more general than convexity since every convex function is preinvex with respect to the mapping $\eta(y, x) = y - x$, but the converse is not true.

The Gauss-Jacobi type quadrature formula has the following

$$\int_a^b (x - a)^p(b - x)^q f(x) dx = \sum_{k=0}^{+\infty} B_{m,k} f(\gamma_k) + R_m^*|f|,$$

for certain $B_{m,k}, \gamma_k$ and rest $R_m^*|f|$ (see [18]).

Recently, Liu (see [12]) obtained several integral inequalities for the left-hand side of (3) under the Definition 3 of P-function. Also in (see [15]), Özdemir et al. established several integral inequalities concerning the left-hand side of (3) via some kinds of convexity.

Motivated by these results, in Section 2, the notion of MT_m-preinvex function is introduced and some new integral inequalities for the left-hand side of (3) involving MT_m-preinvex functions are given. In Section 3, some generalizations of Hermite-Hadamard type inequalities for MT_m-preinvex functions via classical integrals are given. In Section 4, some generalizations of Hermite-Hadamard type inequalities for MT_m-preinvex functions via fractional integrals are given. In Section 5, some applications to special means are given. These results given in Sections 3-4 not only extend the results appeared in the literature (see [13]), but also provide new estimates on these types.

2. New integral inequalities for MT_m-preinvex functions

Definition 6 (see [8]). A set $K \subseteq \mathbb{R}^n$ is said to be m-invex with respect to the mapping $\eta : K \times K \times (0, 1) \rightarrow \mathbb{R}^n$ for some fixed $m \in (0, 1]$, if $mx + t\eta(y, x, m) \in K$ holds for each $x, y \in K$ and any $t \in [0, 1]$.

Remark 1. In Definition 6, under certain conditions, the mapping $\eta(y, x, m)$ could reduce to $\eta(y, x)$. For example when $m = 1$, then the m-invex set degenerates an invex set on K.

We next give new definition, to be referred as MT_m-preinvex function.
Definition 7. Let \(K \subseteq \mathbb{R}^n \) be an open \(m \)-invex set with respect to \(\eta : K \times K \times (0, 1] \rightarrow \mathbb{R}^n \). For \(f : K \rightarrow \mathbb{R} \) and any fixed \(m \in (0, 1] \), if
\[
 f(my + t\eta(x, y, m)) \leq \frac{m\sqrt{t}}{2\sqrt{1-t}} f(x) + \frac{m\sqrt{1-t}}{2\sqrt{t}} f(y),
\]
is valid for all \(x, y \in K \) and \(t \in (0, 1) \), then we say that \(f(x) \) belong to the class of \(MT_m(K) \) with respect to \(\eta \).

Remark 2. In Definition 7, it is worthwhile to note that the class \(MT_m(K) \) is a generalization of the class \(MT(I) \) given in Definition 1 on \(K = I \) with respect to \(\eta(x, y, 1) = x - y \) and \(m = 1 \).

Example 1. \(f, g : (1, \infty) \rightarrow \mathbb{R}, f(x) = x^p, g(x) = (1 + x)^p, p \in (0, \frac{1}{100}) ; h : [1, 3/2] \rightarrow \mathbb{R}, h(x) = (1 + x^2)^k, k \in (0, \frac{1}{100}) \), are simple examples of the new class of \(MT_m \)-preinvex functions with respect to \(\eta(x, y, m) = x - my \) for any fixed \(m \in (0, 1] \), but they are not convex.

In this section, in order to prove our main results regarding some new integral inequalities involving \(MT_m \)-preinvex functions along with beta function, we need the following new lemma:

Lemma 1. Let \(f : K = [ma, ma + \eta(b, a, m)] \rightarrow \mathbb{R} \) be a continuous function on the interval of real numbers \(K^o \) with \(a < b \) and \(ma < ma + \eta(b, a, m) \). Then for any fixed \(m \in (0, 1] \) and any fixed \(p, q > 0 \), we have
\[
 \int_{ma}^{ma+\eta(b,a,m)} (x - ma)^p (ma + \eta(b, a, m) - x)^q f(x)dx = \eta(b, a, m)^{p+q+1} \int_0^1 t^p (1 - t)^q f(ma + t\eta(b, a, m))dt.
\]

Proof. It is easy to observe that
\[
 \int_{ma}^{ma+\eta(b,a,m)} (x - ma)^p (ma + \eta(b, a, m) - x)^q f(x)dx = \eta(b, a, m) \int_0^1 (ma + t\eta(b, a, m) - ma)^p (ma + \eta(b, a, m) - ma)^q f(ma + t\eta(b, a, m))dt
\]
\[
 = \eta(b, a, m)^{p+q+1} \int_0^1 t^p (1 - t)^q f(ma + t\eta(b, a, m))dt.
\]

The following definition will be used in the sequel.
Definition 8. The Euler Beta function is defined for \(x, y > 0\) as
\[
\beta(x, y) = \int_0^1 t^{x-1}(1 - t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}.
\]

Theorem 2. Let \(f : K = [ma, ma + \eta(b, a, m)] \longrightarrow \mathbb{R}\) be a continuous function on the interval of real numbers \(K^\circ, a < b\) with \(ma < ma + \eta(b, a, m)\). If \(|f|\) is a \(MT_m\)-preinvex function on \(K\) for any fixed \(m \in (0, 1]\), then for any fixed \(p, q > 0\), we have
\[
\int_{ma}^{ma+\eta(b,a,m)} (x - ma)^p (ma + \eta(b,a,m) - x)^q f(x) dx
\leq \frac{m}{2} \eta(b,a,m)^{p+q+1} \left[|f(a)|\beta \left(p + \frac{1}{2}, q + \frac{3}{2} \right) + |f(b)|\beta \left(p + \frac{3}{2}, q + \frac{1}{2} \right) \right].
\]

Proof. Since \(|f|\) is a \(MT_m\)-preinvex function on \(K\), we have
\[
\int_{ma}^{ma+\eta(b,a,m)} (x - ma)^p (ma + \eta(b,a,m) - x)^q f(x) dx
\leq \eta(b,a,m)^{p+q+1} \int_0^1 t^p (1-t)^q \left| f(ma + t\eta(b,a,m)) \right| dt
\leq \eta(b,a,m)^{p+q+1} \int_0^1 t^p (1-t)^q \left[\frac{m\sqrt{t}}{2\sqrt{1-t}} |f(b)| + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f(a)| \right] dt
\leq \frac{m}{2} \eta(b,a,m)^{p+q+1} \left[|f(a)|\beta \left(p + \frac{1}{2}, q + \frac{3}{2} \right) + |f(b)|\beta \left(p + \frac{3}{2}, q + \frac{1}{2} \right) \right].
\]

Theorem 3. Let \(f : K = [ma, ma + \eta(b,a,m)] \longrightarrow \mathbb{R}\) be a continuous function on the interval of real numbers \(K^\circ, a < b\) with \(ma < ma + \eta(b,a,m)\). Let \(k > 1\) and \(|f|^{\frac{k}{k-1}}\) be a \(MT_m\)-preinvex function on \(K\) for any fixed \(m \in (0, 1]\). Then for any fixed \(p, q > 0\), we have
\[
\int_{ma}^{ma+\eta(b,a,m)} (x - ma)^p (ma + \eta(b,a,m) - x)^q f(x) dx
\leq \left(\frac{m\pi}{4} \right)^{\frac{k-1}{k}} \eta(b,a,m)^{p+q+1} \left[\beta(kp + 1, kq + 1) \right]^{\frac{1}{k}}
\times \left(|f(a)|^{\frac{k}{k-1}} + |f(b)|^{\frac{k}{k-1}} \right)^{\frac{k-1}{k}}.
\]
Proof. Since $|f|^{\frac{k}{k-1}}$ is a MT_m-preinvex function on K, combining with Lemma 1 and Hölder inequality for all $t \in (0, 1)$ and for any fixed $m \in (0, 1]$, we get

$$
\int_{ma}^{ma+\eta(b,a,m)} (x - ma)^p (ma + \eta(b,a,m) - x)^q f(x) \, dx \\
\leq \eta(b,a,m)^{p+q+1} \left[\int_0^1 t^{kp}(1-t)^{kq} \, dt \right]^{\frac{1}{k}} \\
\times \left[\int_0^1 |f(ma + t\eta(b,a,m))|^{\frac{k}{k-1}} \, dt \right]^{\frac{k-1}{k}} \\
\leq \eta(b,a,m)^{p+q+1} \left[\beta(kp + 1, kq + 1) \right]^{\frac{1}{k}} \\
\times \left[\int_0^1 \left(\frac{\sqrt{2}m}{2 \sqrt{1-t}} |f(b)|^{\frac{k}{k-1}} + \frac{\sqrt{2}m}{2 \sqrt{1-t}} |f(a)|^{\frac{k}{k-1}} \right) \, dt \right]^{\frac{k-1}{k}} \\
= \left(\frac{m\pi}{4} \right)^{\frac{k-1}{k}} \eta(b,a,m)^{p+q+1} \left[\beta(kp + 1, kq + 1) \right]^{\frac{1}{k}} \\
\times \left(|f(a)|^{\frac{k}{k-1}} + |f(b)|^{\frac{k}{k-1}} \right)^{\frac{k-1}{k}}.
$$

\[\blacksquare \]

Theorem 4. Let $f : K = [ma, ma + \eta(b,a,m)] \to \mathbb{R}$ be a continuous function on the interval of real numbers $K \circ \circ, a < b$ with $ma < ma + \eta(b,a,m)$. Let $l \geq 1$ and $|f|^l$ be a MT_m-preinvex function on K for any fixed $m \in (0, 1]$. Then for any fixed $p,q > 0$, we have

$$
\int_{ma}^{ma+\eta(b,a,m)} (x - ma)^p (ma + \eta(b,a,m) - x)^q f(x) \, dx \\
\leq \left(\frac{m}{2} \right) \eta(b,a,m)^{p+q+1} \left[\beta(p + 1, q + 1) \right]^{\frac{1}{l+1}} \\
\times \left[|f(a)|^l \beta \left(p + \frac{1}{2}, q + \frac{3}{2} \right) + |f(b)|^l \beta \left(p + \frac{3}{2}, q + \frac{1}{2} \right) \right]^{\frac{1}{l}}.
$$

Proof. Since $|f|^l$ is a MT_m-preinvex function on K, combining with Lemma 1 and Hölder inequality for all $t \in (0, 1)$ and for any fixed $m \in (0, 1]$, we get

$$
\int_{ma}^{ma+\eta(b,a,m)} (x - ma)^p (ma + \eta(b,a,m) - x)^q f(x) \, dx
$$
\begin{equation}
\eta(b, a, m)p + q + 1 \int_0^1 \left[t^p (1 - t)^q \right]^{\frac{1}{q+1}}
\times \left[t^p (1 - t)^q \right]^{\frac{1}{q+1}} f(ma + t\eta(b, a, m)) dt
\leq \eta(b, a, m)p + q + 1 \left[\int_0^1 t^p (1 - t)^q dt \right]^{\frac{1}{q+1}}
\times \left[\int_0^1 t^p (1 - t)^q |f(ma + t\eta(b, a, m))| dt \right]^{\frac{1}{q+1}}
\leq \eta(b, a, m)p + q + 1 \beta(p + 1, q + 1) \left[\beta(p + 1, q + 1) \right]^{\frac{1}{q+1}}
\times \left[\int_0^1 t^p (1 - t)^q \left(\frac{m\sqrt{t}}{2\sqrt{1 - t}} |f(b)| + \frac{m\sqrt{1 - t}}{2\sqrt{t}} |f(a)| \right) dt \right]^{\frac{1}{q+1}}
= \left(\frac{m}{2} \right)^{\frac{1}{q+1}} \eta(b, a, m)p + q + 1 \beta(p + 1, q + 1) \left[\beta(p + 1, q + 1) \right]^{\frac{1}{q+1}}
\times \left[|f(a)|^{\frac{1}{q+1}} \beta \left(p + \frac{1}{2}, q + \frac{3}{2} \right) + |f(b)|^{\frac{1}{q+1}} \beta \left(p + \frac{3}{2}, q + \frac{1}{2} \right) \right]^{\frac{1}{q+1}}.
\end{equation}

Remark 3. In Theorem 4, if we choose \(l = 1 \), we get Theorem 2.

3. Hermite-Hadamard type classical integral inequalities for \(MT_m\)-preinvex functions

In this section, in order to prove our main results regarding some generalizations of Hermite-Hadamard type inequalities for \(MT_m\)-preinvex functions via classical integrals, we need the following new lemma:

Lemma 2. Let \(K \subseteq \mathbb{R} \) be an open \(m\)-invex subset with respect to \(\eta : K \times K \times (0, 1) \rightarrow \mathbb{R} \) for any fixed \(m \in (0, 1] \) and let \(a, b \in K \), \(a < b \) with \(ma < ma + \eta(b, a, m) \). Assume that \(f : K \rightarrow \mathbb{R} \) is a differentiable function on \(K^\circ \) and \(f' \) is integrable on \([ma, ma + \eta(b, a, m)]\). Then, for each \(x \in [ma, ma + \eta(b, a, m)] \), we have

\begin{equation}
\frac{\eta(x, a, m)f(ma) - \eta(x, b, m)f(mb)}{\eta(b, a, m)} - \frac{1}{\eta(b, a, m)} \left[\int_{ma}^{ma + \eta(x, a, m)} f(u) du - \int_{mb}^{mb + \eta(x, b, m)} f(u) du \right]
\end{equation}
\[
\begin{align*}
&= \frac{\eta(x, a, m)^2}{\eta(b, a, m)} \int_0^1 (t - 1) f'(ma + t\eta(x, a, m)) dt \\
&\quad + \frac{\eta(x, b, m)^2}{\eta(b, a, m)} \int_0^1 (1 - t) f'(mb + t\eta(x, b, m)) dt.
\end{align*}
\]

Proof. Denote
\[
I = \frac{\eta(x, a, m)^2}{\eta(b, a, m)} \int_0^1 (t - 1) f'(ma + t\eta(x, a, m)) dt \\
+ \frac{\eta(x, b, m)^2}{\eta(b, a, m)} \int_0^1 (1 - t) f'(mb + t\eta(x, b, m)) dt.
\]

Integrating by parts, we get
\[
I = \frac{\eta(x, a, m)^2}{\eta(b, a, m)} \left[(t - 1) \frac{f(ma + t\eta(x, a, m))}{\eta(x, a, m)} \bigg|_0^1 - \int_0^1 \frac{f(ma + t\eta(x, a, m))}{\eta(x, a, m)} dt \right] \\
+ \frac{\eta(x, b, m)^2}{\eta(b, a, m)} \left[(1 - t) \frac{f(mb + t\eta(x, b, m))}{\eta(x, b, m)} \bigg|_0^1 + \int_0^1 \frac{f(mb + t\eta(x, b, m))}{\eta(x, b, m)} dt \right] \\
= \frac{\eta(x, a, m)f(ma) - \eta(x, b, m)f(mb)}{\eta(b, a, m)} \\
\quad - \frac{1}{\eta(b, a, m)} \left[\int_{ma}^{ma+\eta(x,a,m)} f(u) du - \int_{mb}^{mb+\eta(x,b,m)} f(u) du \right].
\]

Remark 4. Clearly, if we choose \(m = 1 \) and \(\eta(x, y, 1) = x - y \) in Lemma 2, we get (see [9], Lemma 1).

Using the Lemma 2 the following results can be obtained.

Theorem 5. Let \(A \subseteq \mathbb{R}_0 \) be an open \(m \)-invex subset with respect to \(\eta : A \times A \times (0, 1) \rightarrow \mathbb{R}_0 \) for any fixed \(m \in (0, 1] \) and let \(a, b \in A, a < b \) with \(ma < ma + \eta(b, a, m) \). Assume that \(f : A \rightarrow \mathbb{R} \) is a differentiable function on \(A^o \). If \(|f'| \) is a \(MT_m \)-preinvex function on \([ma, ma + \eta(b, a, m)] \) and \(|f'(x)| \leq M \), then for each \(x \in [ma, ma + \eta(b, a, m)] \), we have

\[
\begin{align*}
&\left| \frac{\eta(x, a, m)f(ma) - \eta(x, b, m)f(mb)}{\eta(b, a, m)} \\
&\quad - \frac{1}{\eta(b, a, m)} \left[\int_{ma}^{ma+\eta(x,a,m)} f(u) du - \int_{mb}^{mb+\eta(x,b,m)} f(u) du \right] \right| \\
&\leq \frac{Mm\pi}{4|\eta(b, a, m)|} \left[\eta(x, a, m)^2 + \eta(x, b, m)^2 \right].
\end{align*}
\]
Proof. Using Lemma 2, MT_m-preinvexity of $|f'|$, the fact that $|f'(x)| \leq M$ for each $x \in [ma, ma + \eta(b, a, m)]$, and taking the modulus, we have

\[
\left| \frac{\eta(x, a, m)f(ma) - \eta(x, b, m)f(mb)}{\eta(b, a, m)} \right| \\
- \frac{1}{\eta(b, a, m)} \left[\int_{ma}^{ma + \eta(x, a, m)} f(u)du - \int_{mb}^{mb + \eta(x, b, m)} f(u)du \right] \\
\leq \frac{\eta(x, a, m)^2}{|\eta(b, a, m)|} \int_0^1 |t - 1||f'(ma + t\eta(x, a, m))|dt \\
+ \frac{\eta(x, b, m)^2}{|\eta(b, a, m)|} \int_0^1 |1 - t||f'(mb + t\eta(x, b, m))|dt \\
\leq \frac{\eta(x, a, m)^2}{|\eta(b, a, m)|} \int_0^1 (1 - t) \left[\frac{m\sqrt{t}}{2\sqrt{1 - t}}|f'(x)| \\
+ \frac{m\sqrt{1 - t}}{2\sqrt{t}}|f'(a)| \right] dt \\
+ \frac{\eta(x, b, m)^2}{|\eta(b, a, m)|} \int_0^1 (1 - t) \left[\frac{m\sqrt{t}}{2\sqrt{1 - t}}|f'(x)| + \frac{m\sqrt{1 - t}}{2\sqrt{t}}|f'(b)| \right] dt \\
\leq \frac{Mm\pi}{4|\eta(b, a, m)|} \left[\eta(x, a, m)^2 + \eta(x, b, m)^2 \right].
\]

\[\blacksquare\]

Remark 5. In Theorem 5, if we choose $m = 1$ and $\eta(x, y, 1) = x - y$ then we get (see [13], Theorem 2.2).

The corresponding version for power of the absolute value of the first derivative is incorporated in the following results.

Theorem 6. Let $A \subseteq \mathbb{R}_0$ be an open m-invex subset with respect to $\eta : A \times A \times (0, 1] \rightarrow \mathbb{R}_0$ for any fixed $m \in (0, 1]$ and let $a, b \in A$, $a < b$ with $ma < ma + \eta(b, a, m)$. Assume that $f : A \rightarrow \mathbb{R}$ is a differentiable function on A°. If $|f'|^q$ is a MT_m-preinvex function on $[ma, ma + \eta(b, a, m)]$, $q > 1$, $p^{-1} + q^{-1} = 1$ and $|f'(x)| \leq M$, then for each $x \in [ma, ma + \eta(b, a, m)]$, we have

\[
\left| \frac{\eta(x, a, m)f(ma) - \eta(x, b, m)f(mb)}{\eta(b, a, m)} \right| \\
- \frac{1}{\eta(b, a, m)} \left[\int_{ma}^{ma + \eta(x, a, m)} f(u)du - \int_{mb}^{mb + \eta(x, b, m)} f(u)du \right] \\
\leq \frac{M}{(p + 1)^{1/p}} \left(\frac{m\pi}{2} \right)^{\frac{1}{q}} \left[\frac{\eta(x, a, m)^2 + \eta(x, b, m)^2}{|\eta(b, a, m)|} \right].
\]
Proof. Suppose that \(q > 1 \). Using Lemma 2, \(MT_m \)-preinvexity of \(|f'|^q \), Hölder inequality, the fact that \(|f'(x)| \leq M \) for each \(x \in [ma, ma + \eta(b, a, m)] \), and taking the modulus, we have

\[
\left| \frac{\eta(x, a, m)f(ma) - \eta(x, b, m)f(mb)}{\eta(b, a, m)} \right| \\
- \frac{1}{\eta(b, a, m)} \left[\int_{ma}^{ma+\eta(x,a,m)} f(u) du - \int_{mb}^{mb+\eta(x,b,m)} f(u) du \right] \\
\leq \frac{\eta(x, a, m)^2}{|\eta(b, a, m)|} \left[\int_0^1 (1-t)^p dt \right]^\frac{1}{p} \left(\int_0^1 |f'(ma + t\eta(x, a, m))|^q dt \right)^\frac{1}{q} \\
+ \frac{\eta(x, b, m)^2}{|\eta(b, a, m)|} \left[\int_0^1 (1-t)^p dt \right]^\frac{1}{p} \left(\int_0^1 |f'(mb + t\eta(x, b, m))|^q dt \right)^\frac{1}{q} \\
\leq \frac{\eta(x, a, m)^2}{|\eta(b, a, m)|} \left[\int_0^1 (1-t)^p dt \right]^\frac{1}{p} \left[\int_0^1 \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)|^q + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(a)|^q \right) dt \right]^\frac{1}{q} \\
+ \frac{\eta(x, b, m)^2}{|\eta(b, a, m)|} \left[\int_0^1 (1-t)^p dt \right]^\frac{1}{p} \left[\int_0^1 \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)|^q + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(b)|^q \right) dt \right]^\frac{1}{q} \\
\leq \frac{M}{(p+1)^{1/p}} \left(\frac{m\pi}{2} \right)^\frac{1}{q} \left[\frac{\eta(x, a, m)^2 + \eta(x, b, m)^2}{|\eta(b, a, m)|} \right].
\]

\[\Box\]

Remark 6. In Theorem 6, if we choose \(m = 1 \) and \(\eta(x, y, 1) = x - y \) then we get (see [13], Theorem 2.4).

Theorem 7. Let \(A \subseteq \mathbb{R}_0 \) be an open \(m \)-invex subset with respect to \(\eta : A \times A \times (0, 1) \rightarrow \mathbb{R}_0 \) for any fixed \(m \in (0, 1] \) and let \(a, b \in A \), \(a < b \) with \(ma < ma + \eta(b, a, m) \). Assume that \(f : A \rightarrow \mathbb{R} \) is a differentiable function on \(A^o \). If \(|f'|^q \) is a \(MT_m \)-preinvex function on \([ma, ma + \eta(b, a, m)] \), \(q \geq 1 \) and \(|f'(x)| \leq M \), then for each \(x \in [ma, ma + \eta(b, a, m)] \), we have

\[
\left| \frac{\eta(x, a, m)f(ma) - \eta(x, b, m)f(mb)}{\eta(b, a, m)} \right| \\
\leq \frac{M}{(p+1)^{1/p}} \left(\frac{m\pi}{2} \right)^\frac{1}{q} \left[\frac{\eta(x, a, m)^2 + \eta(x, b, m)^2}{|\eta(b, a, m)|} \right].
\]
we get Theorem 5.

and taking the modulus, we have mean inequality, the fact that then we get (see [13], Theorem 2.6). Also, in Theorem 7, if we choose q

Using Lemma 2,

Proof. Using Lemma 2, MT_m-preinvexity of $|f'|^q$, the well-known power mean inequality, the fact that $|f'(x)| \leq M$ for each $x \in [ma, ma + \eta(b, a, m)]$, and taking the modulus, we have

$$\left| \frac{\eta(x, a, m)f(ma) - \eta(x, b, m)f(mb)}{\eta(b, a, m)} \right| \leq \frac{\eta(x, a, m)^2}{|\eta(b, a, m)|} \int_0^1 |t - 1||f'(ma + t\eta(x, a, m))|dt$$

$$+ \frac{\eta(x, b, m)^2}{|\eta(b, a, m)|} \int_0^1 |1 - t||f'(mb + t\eta(x, b, m))|dt$$

$$\leq \frac{\eta(x, a, m)^2}{|\eta(b, a, m)|} \left(\int_0^1 (1 - t)dt \right)^{1 - \frac{1}{q}} \left(\int_0^1 (1 - t)|f'(ma + t\eta(x, a, m))|^q dt \right)^{\frac{1}{q}}$$

$$+ \frac{\eta(x, b, m)^2}{|\eta(b, a, m)|} \left(\int_0^1 (1 - t)dt \right)^{1 - \frac{1}{q}} \left(\int_0^1 (1 - t)|f'(mb + t\eta(x, b, m))|^q dt \right)^{\frac{1}{q}}$$

$$\leq \frac{\eta(x, a, m)^2}{|\eta(b, a, m)|} \left(\int_0^1 (1 - t)dt \right)^{1 - \frac{1}{q}}$$

$$\times \left[\int_0^1 (1 - t) \left(\frac{m\sqrt{t}}{2\sqrt{1 - t}} |f'(x)|^q + \frac{m\sqrt{1 - t}}{2\sqrt{t}} |f'(a)|^q \right) dt \right]^\frac{1}{q}$$

$$+ \frac{\eta(x, b, m)^2}{|\eta(b, a, m)|} \left(\int_0^1 (1 - t)dt \right)^{1 - \frac{1}{q}}$$

$$\times \left[\int_0^1 (1 - t) \left(\frac{m\sqrt{t}}{2\sqrt{1 - t}} |f'(x)|^q + \frac{m\sqrt{1 - t}}{2\sqrt{t}} |f'(b)|^q \right) dt \right]^\frac{1}{q}$$

$$\leq M \left(\frac{1}{2} \right)^{1 + \frac{1}{q}} (m\pi)^{\frac{1}{q}} \left[\frac{\eta(x, a, m)^2 + \eta(x, b, m)^2}{|\eta(b, a, m)|} \right].$$

Remark 7. In Theorem 7, if we choose $m = 1$ and $\eta(x, y, 1) = x - y$ then we get (see [13], Theorem 2.6). Also, in Theorem 7, if we choose $q = 1$, we get Theorem 5.
4. Hermite-Hadamard type fractional integral inequalities for MT_m-preinvex functions

In this section, in order to prove our main results regarding some generalizations of Hermite-Hadamard type inequalities for MT_m-preinvex functions via fractional integrals, we need the following new lemma:

Lemma 3. Let $K \subseteq \mathbb{R}$ be an open m-invex subset with respect to $\eta : K \times K \times (0,1] \rightarrow \mathbb{R}$ for any fixed $m \in (0,1]$ and let $a,b \in K$, $a < b$ with $ma < ma + \eta(b,a,m)$. Assume that $f : K \rightarrow \mathbb{R}$ is a differentiable function on K° and f' is integrable on $[ma,ma + \eta(b,a,m)]$. Then, for each $x \in [ma,ma + \eta(b,a,m)]$ and $\alpha > 0$, we have

\begin{equation}
\eta(x,a,m)^{\alpha} f(ma) - \eta(x,b,m)^{\alpha} f(mb)
= \frac{\Gamma(\alpha + 1)}{\eta(b,a,m)} \left[J_\alpha^{\eta(x,a,m)} f(ma) - J_\alpha^{\eta(x,b,m)} f(mb) \right]
- \frac{\eta(x,a,m)^{\alpha+1}}{\eta(b,a,m)} \int_0^1 (t^{\alpha} - 1)f'(ma + t\eta(x,a,m))dt
+ \frac{\eta(x,b,m)^{\alpha+1}}{\eta(b,a,m)} \int_0^1 (1 - t^{\alpha})f'(mb + t\eta(x,b,m))dt,
\end{equation}

where $\Gamma(\alpha) = \int_0^{+\infty} e^{-u} u^{\alpha-1} du$ is the Euler Gamma function.

Proof. Denote

\begin{align*}
I &= \frac{\eta(x,a,m)^{\alpha+1}}{\eta(b,a,m)} \int_0^1 (t^{\alpha} - 1)f'(ma + t\eta(x,a,m))dt \\
&\quad + \frac{\eta(x,b,m)^{\alpha+1}}{\eta(b,a,m)} \int_0^1 (1 - t^{\alpha})f'(mb + t\eta(x,b,m))dt.
\end{align*}

Integrating by parts, we get

\begin{align*}
I &= \frac{\eta(x,a,m)^{\alpha+1}}{\eta(b,a,m)} \left[(t^{\alpha} - 1)\frac{f(ma + t\eta(x,a,m))}{\eta(x,a,m)} \right]_0^1 \\
&\quad - \alpha \int_0^1 t^{\alpha-1}f(ma + t\eta(x,a,m)) \eta(x,a,m) dt \\
&\quad + \frac{\eta(x,b,m)^{\alpha+1}}{\eta(b,a,m)} \left[(1 - t^{\alpha})\frac{f(mb + t\eta(x,b,m))}{\eta(x,b,m)} \right]_0^1 \\
&\quad + \alpha \int_0^1 t^{\alpha-1}f(mb + t\eta(x,b,m)) \eta(x,b,m) dt.
\end{align*}
\[\frac{\eta(x,a,m)^\alpha f(ma) - \eta(x,b,m)^\alpha f(mb)}{\eta(b,a,m)} - \frac{\Gamma(\alpha + 1)}{\eta(b,a,m)} \left[J_{(ma+\eta(x,a,m))}^\alpha f(ma) - J_{(mb+\eta(x,b,m))}^\alpha f(mb) \right]. \]

Remark 8. Clearly, if we choose \(m = 1 \) and \(\eta(x,y,1) = x - y \) in Lemma 3, we get (see [13], Lemma 3.1).

By using Lemma 3, one can extend to the following results.

Theorem 8. Let \(A \subseteq \mathbb{R}_0 \) be an open \(m \)-invex subset with respect to \(\eta : A \times A \times (0,1) \rightarrow \mathbb{R}_0 \) for any fixed \(m \in (0,1) \) and let \(a,b \in A, a < b \) with \(ma < ma + \eta(b,a,m) \). Assume that \(f : A \rightarrow \mathbb{R} \) is a differentiable function on \(A^\circ \). If \(|f'| \) is a \(MT_m \)-preinvex function on \([ma, ma + \eta(b,a,m)] \) and \(|f'(x)| \leq M \), then for each \(x \in [ma, ma + \eta(b,a,m)] \) and \(\alpha > 0 \), we have

\[Mm = \frac{1}{2} \left[\frac{|\eta(x,a,m)|^{\alpha+1} + |\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \right] \left[\frac{\pi}{\Gamma(\alpha + \frac{1}{2})} \frac{\Gamma(\alpha + \frac{1}{2})}{\Gamma(\alpha + 1)} \right]. \]

Proof. Using Lemma 3, \(MT_m \)-preinvexity of \(|f'| \), the fact that \(|f'(x)| \leq M \) for each \(x \in [ma, ma + \eta(b,a,m)] \), \(\alpha > 0 \), and taking the modulus, we have

\[\left| \frac{\eta(x,a,m)^\alpha f(ma) - \eta(x,b,m)^\alpha f(mb)}{\eta(b,a,m)} - \frac{\Gamma(\alpha + 1)}{\eta(b,a,m)} \left[J_{(ma+\eta(x,a,m))}^\alpha f(ma) - J_{(mb+\eta(x,b,m))}^\alpha f(mb) \right] \right| \]

\[\leq \frac{|\eta(x,a,m)|^{\alpha+1}}{|\eta(b,a,m)|} \int_0^1 |t^\alpha - 1||f'(ma + t\eta(x,a,m))|dt \]

\[+ \frac{|\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \int_0^1 |1 - t^\alpha||f'(mb + t\eta(x,b,m))|dt \]

\[\leq \frac{|\eta(x,a,m)|^{\alpha+1}}{|\eta(b,a,m)|} \int_0^1 (1 - t^\alpha) \left[\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)| + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(a)| \right] dt \]

\[+ \frac{|\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \int_0^1 (1 - t^\alpha) \left[\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)| + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(b)| \right] dt \]
\[\leq \frac{Mm}{2} \left[|\eta(x,a,m)|^{\alpha+1} + |\eta(x,b,m)|^{\alpha+1} \right] \left[\pi - \frac{\Gamma(\alpha + \frac{1}{2}) \Gamma\left(\frac{1}{2}\right)}{\Gamma(\alpha + 1)} \right]. \]

\[\text{Remark 9.} \] In Theorem 8, if we choose \(m = 1 \) and \(\eta(x,y,1) = x-y \) then we get (see [13], Theorem 3.2). Also, in Theorem 8, if we choose \(\alpha = 1 \), we get the inequality in Theorem 5.

\[\text{Theorem 9.} \] Let \(A \subseteq \mathbb{R}_0 \) be an open \(m \)-invel subset with respect to \(\eta: A \times A \times (0,1) \rightarrow \mathbb{R}_0 \) for any fixed \(m \in (0,1] \) and let \(a, b \in A \), \(a < b \) with \(ma < ma + \eta(b,a,m) \). Assume that \(f: A \rightarrow \mathbb{R} \) is a differentiable function on \(A^0 \). If \(|f'|^q \) is a \(MT_m \)-preinvex function on \([ma, ma + \eta(b,a,m)]\), \(q > 1 \), \(p^{-1} + q^{-1} = 1 \) and \(|f'(x)| \leq M \), then for each \(x \in [ma, ma + \eta(b,a,m)] \) and \(\alpha > 0 \), we have

\[\left(11\right) \left| \frac{\eta(x,a,m)\alpha f(ma) - \eta(x,b,m)\alpha f(mb)}{\eta(b,a,m)} \right| \]

\[-\frac{\Gamma(\alpha + 1)}{\eta(b,a,m)} \left[J_{(ma + \eta(x,a,m))}^{\alpha} (f(ma) - J_{(mb + \eta(x,b,m))}^{\alpha} f(mb)) \right] \]

\[\leq M \left(\frac{m\pi}{2} \right)^{\frac{1}{q}} \left[\frac{|\eta(x,a,m)|^{\alpha+1} + |\eta(x,b,m)|^{\alpha+1}}{\eta(b,a,m)} \right] \left[\frac{\Gamma(p + 1) \Gamma\left(\frac{1}{\alpha}\right)}{\alpha \Gamma(p + 1 + \frac{1}{\alpha})} \right]^{\frac{1}{p}}. \]

\[\text{Proof.} \] Suppose that \(q > 1 \). Using Lemma 3, \(MT_m \)-preinvexity of \(|f'|^q \), Hölder inequality, the fact that \(|f'(x)| \leq M \) for each \(x \in [ma, ma + \eta(b,a,m)] \), \(\alpha > 0 \), and taking the modulus, we have

\[\left| \frac{\eta(x,a,m)\alpha f(ma) - \eta(x,b,m)\alpha f(mb)}{\eta(b,a,m)} \right| \]

\[-\frac{\Gamma(\alpha + 1)}{\eta(b,a,m)} \left[J_{(ma + \eta(x,a,m))}^{\alpha} (f(ma) - J_{(mb + \eta(x,b,m))}^{\alpha} f(mb)) \right] \]

\[\leq \left| \frac{\eta(x,a,m)}{\eta(b,a,m)} \right|^{\alpha+1} \int_0^1 |t^\alpha - 1| |f'(ma + t\eta(x,a,m))|dt \]

\[+ \left| \frac{\eta(x,b,m)}{\eta(b,a,m)} \right|^{\alpha+1} \int_0^1 |1 - t^\alpha| |f'(mb + t\eta(x,b,m))|dt \]

\[\leq \left| \frac{\eta(x,a,m)}{\eta(b,a,m)} \right|^{\alpha+1} \left(\int_0^1 (1 - t^\alpha)^p dt \right)^{\frac{1}{p}} \left(\int_0^1 |f'(ma + t\eta(x,a,m))|^q dt \right)^{\frac{1}{q}} \]

\[+ \left| \frac{\eta(x,b,m)}{\eta(b,a,m)} \right|^{\alpha+1} \left(\int_0^1 (1 - t^\alpha)^p dt \right)^{\frac{1}{p}} \left(\int_0^1 |f'(mb + t\eta(x,b,m))|^q dt \right)^{\frac{1}{q}}. \]
\[\leq \frac{|\eta(x, a, m)|^{\alpha+1}}{|\eta(b, a, m)|} \left(\int_0^1 (1 - t^\alpha)^{\frac{1}{p}} dt \right) \]

\[\times \left[\int_0^1 \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)|^q + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(a)|^q \right) dt \right] \]

\[+ \frac{|\eta(x, b, m)|^{\alpha+1}}{|\eta(b, a, m)|} \left(\int_0^1 (1 - t^\alpha)^{\frac{1}{p}} dt \right) \]

\[\times \left[\int_0^1 \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)|^q + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(b)|^q \right) dt \right] \]

\[\leq M \left(\frac{m\pi}{2}\right)^{\frac{1}{q}} \left[\frac{|\eta(x, a, m)|^{\alpha+1} + |\eta(x, b, m)|^{\alpha+1}}{|\eta(b, a, m)|} \Gamma(p+1) \left(\frac{1}{\alpha}\right) \right]^{\frac{1}{p}}. \]

Remark 10. In Theorem 9, if we choose \(m = 1 \) and \(\eta(x, y, 1) = x - y \) then we get (see [13], Theorem 3.5). Also, in Theorem 9, if we choose \(\alpha = 1 \), we get the inequality in Theorem 6.

Theorem 10. Let \(A \subseteq \mathbb{R}_0 \) be an open \(m \)-invex subset with respect to \(\eta : A \times A \times (0, 1) \rightarrow \mathbb{R}_0 \) for any fixed \(m \in (0, 1) \) and let \(a, b \in A \), \(a < b \) with \(ma < ma + \eta(b, a, m) \). Assume that \(f : A \rightarrow \mathbb{R} \) is a differentiable function on \(A^\circ \). If \(|f|^q \) is a \(MT_m \)-preinvex function on \([ma, ma + \eta(b, a, m)] \), \(q \geq 1 \) and \(|f'(x)| \leq M \), then for each \(x \in [ma, ma + \eta(b, a, m)] \) and \(\alpha > 0 \), we have

\[|\eta(x, a, m)^\alpha f(ma) - \eta(x, b, m)^\alpha f(mb)| \]

\[\leq M \left(\frac{m\pi}{2}\right)^{\frac{1}{q}} \left[\frac{\alpha}{\alpha + 1} \right]^{1 - \frac{1}{q}} \left[\frac{\Gamma(\alpha + 1)}{\Gamma(\alpha + 1)} \right]^{\frac{1}{p}} \]

\[\times \left[\frac{|\eta(x, a, m)|^{\alpha+1} + |\eta(x, b, m)|^{\alpha+1}}{|\eta(b, a, m)|} \right]. \]

Proof. Using Lemma 3, \(MT_m \)-preinvexity of \(|f|^q \), the well-known power mean inequality, the fact that \(|f'(x)| \leq M \) for each \(x \in [ma, ma + \eta(b, a, m)] \), \(\alpha > 0 \), and taking the modulus, we have

\[|\eta(x, a, m)^\alpha f(ma) - \eta(x, b, m)^\alpha f(mb)| \]

\[\leq M \left(\frac{m\pi}{2}\right)^{\frac{1}{q}} \left[\frac{\alpha}{\alpha + 1} \right]^{1 - \frac{1}{q}} \left[\frac{\Gamma(\alpha + 1)}{\Gamma(\alpha + 1)} \right]^{\frac{1}{p}} \]

\[\times \left[\frac{|\eta(x, a, m)|^{\alpha+1} + |\eta(x, b, m)|^{\alpha+1}}{|\eta(b, a, m)|} \right]. \]
\[
\begin{align*}
&\quad - \frac{\Gamma(\alpha + 1)}{\eta(b, a, m)} \left[J_\eta^{\alpha}(ma + \eta(x, a, m)) - f(ma) - J_\eta^{\alpha}(mb + \eta(x, b, m)) - f(mb) \right] \\
&\;\leq \frac{\eta(x, a, m)^{\alpha + 1}}{|\eta(b, a, m)|} \int_0^1 |t^\alpha - 1| |f'(ma + t\eta(x, a, m))| dt \\
&\quad + \frac{\eta(x, b, m)^{\alpha + 1}}{|\eta(b, a, m)|} \int_0^1 |1 - t^\alpha| |f'(mb + t\eta(x, b, m))| dt \\
&\;\leq \frac{\eta(x, a, m)^{\alpha + 1}}{|\eta(b, a, m)|} \left(\int_0^1 (1 - t^\alpha) dt \right)^{1 - \frac{1}{q}} \\
&\quad \times \left(\int_0^1 (1 - t^\alpha)|f'(ma + t\eta(x, a, m))|^q dt \right)^{\frac{1}{q}} \\
&\quad + \frac{\eta(x, b, m)^{\alpha + 1}}{|\eta(b, a, m)|} \left(\int_0^1 (1 - t^\alpha) dt \right)^{1 - \frac{1}{q}} \\
&\quad \times \left(\int_0^1 (1 - t^\alpha)|f'(mb + t\eta(x, b, m))|^q dt \right)^{\frac{1}{q}} \\
&\;\leq \frac{\eta(x, a, m)^{\alpha + 1}}{|\eta(b, a, m)|} \left(\int_0^1 (1 - t^\alpha) dt \right)^{1 - \frac{1}{q}} \\
&\quad \times \left[\int_0^1 (1 - t^\alpha) \left(\frac{m\sqrt{t}}{2\sqrt{1 - t}} |f'(x)|^q + \frac{m\sqrt{1 - t}}{2\sqrt{t}} |f'(a)|^q \right) dt \right]^{\frac{1}{q}} \\
&\quad + \frac{\eta(x, b, m)^{\alpha + 1}}{|\eta(b, a, m)|} \left(\int_0^1 (1 - t^\alpha) dt \right)^{1 - \frac{1}{q}} \\
&\quad \times \left[\int_0^1 (1 - t^\alpha) \left(\frac{m\sqrt{t}}{2\sqrt{1 - t}} |f'(x)|^q + \frac{m\sqrt{1 - t}}{2\sqrt{t}} |f'(b)|^q \right) dt \right]^{\frac{1}{q}} \\
&\quad \leq M \left(\frac{m}{2} \right)^{\frac{1}{q}} \left(\frac{\alpha}{\alpha + 1} \right)^{1 - \frac{1}{q}} \left[\frac{\pi}{\Gamma(\alpha + \frac{1}{2})} \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha + 1)} \right]^{\frac{1}{q}} \\
&\quad \times \left[\frac{\eta(x, a, m)^{\alpha + 1} + |\eta(x, b, m)|^{\alpha + 1}}{|\eta(b, a, m)|^{\alpha + 1}} \right].
\end{align*}
\]

Remark 11. In Theorem 10, if we choose \(m = 1 \) and \(\eta(x, y, m) = x - my \) then we get (see [13], Theorem 3.8). Also, in Theorem 10, if we choose \(\alpha = 1 \), we get Theorem 7.

5. Applications to special means

In the following we give certain generalizations of some notions for a positive valued function of a positive variable.
Definition 9 (see [2]). A function $M : \mathbb{R}_+^2 \rightarrow \mathbb{R}_+$, is called a Mean function if it has the following properties:

1. Homogeneity: $M(ax, ay) = aM(x, y)$, for all $a > 0$,
2. Symmetry: $M(x, y) = M(y, x)$,
3. Reflexivity: $M(x, x) = x$,
4. Monotonicity: If $x \leq x'$ and $y \leq y'$, then $M(x, y) \leq M(x', y')$.
5. Internality: $\min\{x, y\} \leq M(x, y) \leq \max\{x, y\}$.

We consider some means for arbitrary positive real numbers α, β ($\alpha \neq \beta$).

1. The arithmetic mean:
 $$A := A(\alpha, \beta) = \frac{\alpha + \beta}{2}.$$

2. The geometric mean:
 $$G := G(\alpha, \beta) = \sqrt{\alpha\beta}.$$

3. The harmonic mean:
 $$H := H(\alpha, \beta) = \frac{2}{\frac{1}{\alpha} + \frac{1}{\beta}}.$$

4. The power mean:
 $$P_r := P_r(\alpha, \beta) = \left(\frac{\alpha^r + \beta^r}{2}\right)^{\frac{1}{r}}, \quad r \geq 1.$$

5. The identric mean:
 $$I := I(\alpha, \beta) = \begin{cases} \frac{1}{e} \left(\frac{\beta^\beta}{\alpha^\alpha}\right), & \alpha \neq \beta; \\ \alpha, & \alpha = \beta. \end{cases}$$

6. The logarithmic mean:
 $$L := L(\alpha, \beta) = \frac{\beta - \alpha}{\log(\beta) - \log(\alpha)}, \quad \alpha \neq \beta.$$

7. The generalized log-mean:
 $$L_p := L_p(\alpha, \beta) = \left[\frac{\beta^{p+1} - \alpha^{p+1}}{(p+1)(\beta - \alpha)}\right]^{\frac{1}{p}}; \quad p \in \mathbb{R} \setminus \{-1, 0\}, \quad \alpha \neq \beta.$$

8. The weighted p-power mean:
 $$M_p\left(\frac{\alpha_1}{u_1}, \frac{\alpha_2}{u_2}, \cdots, \frac{\alpha_n}{u_n}\right) = \left(\sum_{i=1}^{n} \alpha_i u_i^p\right)^{\frac{1}{p}}$$
 where $0 \leq \alpha_i \leq 1$, $u_i > 0$ ($i = 1, 2, \ldots, n$) with $\sum_{i=1}^{n} \alpha_i = 1$.
It is well known that L_p is monotonic nondecreasing over $p \in \mathbb{R}$ with $L_{-1} := L$ and $L_0 := I$. In particular, we have the following inequality $H \leq G \leq L \leq I \leq A$. Now, let a and b be positive real numbers such that $a < b$. Consider the function $M := M(a, b) : [a, a + \eta(b, a)] \times [a, a + \eta(b, a)] \rightarrow \mathbb{R}_+$, which is one of the above mentioned means, therefore one can obtain various inequalities using the results of Sections (-) for these means as follows:

Replace $\eta(x, y, m)$ with $\eta(x, y)$ and setting $\eta(a, x) = M(a, x)$ and $\eta(b, x) = M(b, x)$, $\forall x \in A$, for value $m = 1$ in (7), (8), (11) and (12) one can obtain the following interesting inequalities involving means:

\[
\begin{align*}
(13) & \quad \left| \frac{\eta(a, x)f(a) - \eta(b, x)f(b)}{M(a, b)} \right| \\
& - \frac{1}{M(a, b)} \left[\int_a^{a+M(a, x)} f(u)du - \int_b^{b+M(b, x)} f(u)du \right] \\
& \leq \frac{M}{(p + 1)^{1/p}} \left(\frac{\pi}{2} \right)^\frac{1}{q} \left[\frac{M(a, x)^2 + M(b, x)^2}{M(a, b)} \right],
\end{align*}
\]

\[
\begin{align*}
(14) & \quad \left| \frac{\eta(a, x)f(a) - \eta(b, x)f(b)}{M(a, b)} \right| \\
& - \frac{1}{M(a, b)} \left[\int_a^{a+M(a, x)} f(u)du - \int_b^{b+M(b, x)} f(u)du \right] \\
& \leq M \left(\frac{1}{2} \right)^{1+\frac{1}{q}} \left(\frac{\pi}{2} \right)^\frac{1}{q} \left[\frac{M(a, x)^2 + M(b, x)^2}{M(a, b)} \right],
\end{align*}
\]

\[
\begin{align*}
(15) & \quad \left| \frac{M(a, x)^\alpha f(a) - M(b, x)^\alpha f(b)}{M(a, b)} \right| \\
& - \frac{\Gamma(\alpha + 1)}{M(a, b)} \left[J^\alpha_{(a+M(a, x))} - f(a) - J^\alpha_{(b+M(b, x))} - f(b) \right] \\
& \leq M \left(\frac{\pi}{2} \right)^\frac{1}{q} \left[\frac{M(a, x)^{\alpha+1} + M(b, x)^{\alpha+1}}{M(a, b)} \right] \left[\frac{\Gamma(p + 1)\Gamma \left(\frac{1}{\alpha} \right)}{\alpha\Gamma(p + 1 + \frac{1}{\alpha})} \right]^{\frac{1}{p}},
\end{align*}
\]

\[
\begin{align*}
(16) & \quad \left| \frac{M(a, x)^\alpha f(a) - M(b, x)^\alpha f(b)}{M(a, b)} \right| \\
& - \frac{\Gamma(\alpha + 1)}{M(a, b)} \left[J^\alpha_{(a+M(a, x))} - f(a) - J^\alpha_{(b+M(b, x))} - f(b) \right]
\end{align*}
\]
Letting \(M(a, x) \) and \(M(b, x) \) equal to \(A, G, H, P_r, I, L, L_p, M_p, \forall x \in A \) in (13), (14), (15) and (16), we get the inequalities involving means for a particular choices of a differentiable \(MT_1 \)-preinvex function \(f \). The details are left to the interested reader.

References

Artion Kashuri and Rozana Liko

Artion Kashuri
DEPARTMENT OF MATHEMATICS
FACULTY OF TECHNICAL SCIENCE
UNIVERSITY "ISMAIL QEMALI"
VLORA, ALBANIA

e-mail: artionkashuri@gmail.com

Rozana Liko
DEPARTMENT OF MATHEMATICS
FACULTY OF TECHNICAL SCIENCE
UNIVERSITY "ISMAIL QEMALI"
VLORA, ALBANIA

e-mail: rozanaliko86@gmail.com

Received on 12.11.2016 and, in revised form, on 29.03.2017.