CONTRA $(\mu g, \lambda)$-CONTINUOUS FUNCTIONS

Abstract. In this paper we introduce and study some properties of contra $(\mu g, \lambda)$-continuous functions. We obtain some characterizations and several properties of such functions.

Key words: contra $(\mu g, \lambda)$-continuous, μg-closed set, generalized topological space

AMS Mathematics Subject Classification: 54C10, 54C08, 54D10.

1. Introduction

In 2002, generalized topological spaces introduced and developed by A. Csaszar [1]. A generalized topology (briefly a GT) μ on a nonempty set X is a collection of subsets of X such that $\emptyset \in \mu$ and μ is closed under arbitrary unions. The pair (X, μ) is called a generalized topological space (briefly a GTS). Elements of μ are called μ-open sets and a complement of a μ-open set is called a μ-closed set. The union of all μ-open subsets of a subset S of (X, μ) is called the μ-interior of S [2] and denoted by $i_{\mu}(S)$. The intersection of μ-closed sets containing S is called the μ-closure of S [2] and denoted by $c_{\mu}(S)$. A subset S of a space (X, μ) is called μ-regular closed (shortly μr-closed) [3] if $S = c_{\mu}(i_{\mu}(S))$. If $X \setminus S$ is μ-regular closed then S is called as μ-regular open (shortly μr-open).

A GTS (X, μ) is called strong if $X \in \mu$ and a quasi-topological space if μ is closed under finite intersections. (X, μ) is said to be extremally disconnected (briefly EDC) if the μ-closure of every μ-open set is μ-open.

Generalized closed sets introduced by N. Levine [6] in 1970. This notion has been studied and developed in many papers and plays a significant role in General Topology. The purpose of this paper is to introduce new types of continuous functions using this concept.

2. Preliminaries

Definition 1. A subset A of a GTS (X, μ) is said to be μ-semi-open [1] (respectively μ-preopen [1], and μ-δ-open) if $A \subset c_{\mu}(i_{\mu}(A))$ (respectively
$A \subset i_{\mu}(c_{\mu}(A))$, and A is the union of μr-open sets). The complements of the above sets are called respective closed ones.

Definition 2. Let A be a subset of GTS (X, μ). Then, A is called μg-closed [9] if $c_{\mu}(A) \subset U$ whenever $A \subset U$ and U is μ-open. It is known that every μ-closed set in a GTS (X, μ) is μg-closed, but reverse implication is not true in general. The complement of a μg-closed set is called μg-open. The union of all μg-open subsets of a subset A of (X, μ) is called the μg-interior of A and denoted by $\text{int}_{\mu g}(A)$. The intersection of all μg-closed sets containing a subset A is called the μg-closure of A and denoted by $\text{cl}_{\mu g}(A)$. If A is μg-closed, then $A = \text{cl}_{\mu g}(A)$. The converse does not hold in general.

The family of all μg-open (respectively μg-closed, μ-closed) sets of (X, μ) is denoted by $GO(\mu)$ (respectively $GC(\mu)$, $C(\mu)$). The family of all μg-open (respectively μg-closed, μ-closed) sets containing a point $x \in X$ is denoted by $GO(\mu, x)$ (respectively $GC(\mu, x)$, $C(\mu, x)$).

Definition 3. A function $f : (X, \mu) \to (Y, \lambda)$, where (X, μ) and (Y, λ) are two GTS’s, is called:

(a) $(\mu g, \lambda)$-continuous [12] if $f^{-1}(V)$ is μg-closed in (X, μ) for each λ-closed set V in (Y, λ),

(b) $(\mu g, \lambda g)$- irresolute [12] if (μ, λ)- irresolute function) if $f^{-1}(V)$ is μg-closed $(\mu$-closed) in (X, μ) for each λg-closed $(\lambda$-closed set) V in (Y, λ),

(c) contra (μ, λ)-continuous [7] if $f^{-1}(V)$ is μ-closed in (X, μ) for each λ-open set V in (Y, λ),

(d) contra $(\mu g, \lambda)$-continuous $f^{-1}(V)$ is μg-closed in (X, μ) for each λ-open set V in (Y, λ),

(e) (μ, λ)-closed if $f(F)$ is λ-closed in (Y, λ) for each μ-closed set F in (X, μ).

Remark 1. Assume that $f : (X, \mu) \to (Y, \lambda)$ is contra $(\mu g, \lambda)$-continuous. Since $\emptyset \in \lambda$ and f is contra $(\mu g, \lambda)$-continuous, $f^{-1}(\emptyset) = \emptyset$ is μg-closed and this implies that \emptyset is μ-closed, because it is true that $\emptyset \subset \emptyset \in \mu$ and $\text{cl}_{\mu}(\emptyset) \subset \emptyset \subset \text{cl}_{\mu}(\emptyset)$. So, if $f : (X, \mu) \to (Y, \lambda)$ is contra $(\mu g, \lambda)$-continuous, then (X, μ) is a strong GTS. Same is true for if $f : (X, \mu) \to (Y, \lambda)$ is contra (μ, λ)-continuous.

The concept of contra $(\mu g, \lambda)$-continuous functions is a generalization of Contra sg-Continuous Maps [8].

Definition 4. A GTS (X, μ) is called:

(a) μ-Urysohn if for each pair of distinct points x and y in X, there exist μ-open sets U and V such that $x \in U$, $y \in V$ and $c_{\mu}(U) \cap c_{\mu}(V) = \emptyset$.

(b) μ-$T_{1\frac{1}{2}}$-space [9] if each μg-closed subset of (X, μ) is μ-closed,

(c) μg-connected [12] if X cannot be written as a disjoint union of two nonempty μg-open sets,

(d) weakly μ-Hausdorff (see [13]) if each element of X is an intersection of μr-closed sets.

Definition 5 ([9]). Let A be a subset of a GTS (X, μ). The set $\cap \{U \in \mu : A \subseteq U\}$ is called the μ-kernel of A and denoted by μ-ker(A).

The following Lemma due to D. Jayanthi stated without proof in [5], we give the proofs for the sake of completeness.

Lemma 1 ([5]). Let (X, μ) be a GTS and $A, B \subseteq X$. The following properties hold:

(a) μ-ker(A) \supset A and if $A \in \mu$ then $A = \mu$-ker(A)

(b) If $A \subseteq B$, then μ-ker(A) \subseteq μ-ker(B).

(c) $x \in \mu$-ker(A) iff $A \cap F \neq \emptyset$ for any μ-closed set F containing x.

Proof. (a) Let $U_A = \{O : A \subseteq O \in \mu\}$ be the family of all μ-open sets containing A. Then we have μ-ker(A) $=$ $\bigcap U_A \supset A$. If $A \in \mu$, then $A \in U_A$ and $\bigcap U_A \subseteq A$ gives $A = \bigcap U_A = \mu$-ker(A).

(b) Let $A \subseteq B$, consider $U_A = \{U : A \subseteq U \in \mu\}$ and $U_B = \{U : B \subseteq U \in \mu\}$. Then for $U \in U_B$, it is true that $A \subseteq B \subseteq U \in U_B$, that is $U \in U_A$ and $U_B \subseteq U_A$ and this implies $[(U_A - U_B) \cup U_B] = U_A$, so we have

$$\mu\text{-}ker(A) = \bigcap U_A$$

$$= (\bigcap (U_A - U_B)) \cap (\bigcap U_B)$$

$$\subseteq \bigcap U_B$$

$$= \mu\text{-}ker(B).$$

(c) Let $x \in \mu$-ker(A) and suppose that $A \cap F = \emptyset$ for some μ-closed set F containing x. Then $A \subseteq X - F \in \mu$, and $x \notin X - F$ but we have

$$x \in \mu\text{-}ker(A) \subseteq \mu\text{-}ker(X - F) = X - F$$

which is a contradiction.

Conversely, assume that $A \cap F \neq \emptyset$ for any μ-closed set F containing x, but $x \notin \mu$-ker(A). Then, there exists a μ-open set V such that $A \subseteq V$ and $x \notin V$. Thus we have $x \in X - V \subset (X - A)$ and $X - V$ is μ-closed. But this implies $(X - V) \cap A \subset (X - A) \cap A = \emptyset$ that is $(X - V) \cap A = \emptyset$, but this contradicts with the hypothesis.
3. Characterizations of contra \((\mu g, \lambda)\)-continuous functions

Remark 2. From the definitions we have stated above, we observe that in a \(GTS (X, \mu)\), every contra \((\mu, \lambda)\)-continuous function is contra \((\mu g, \lambda)\)-continuous. However the converse does not hold in general.

Example 1. Let \(\mathbb{R}\) be the set of real numbers, \(\mu = \{\mathbb{R}, \emptyset, \mathbb{R}\setminus\{0\}, \mathbb{R}\setminus\{-1, 1\}\}\) and \(\lambda = \{\emptyset, \{1\}, \mathbb{R}\}\). Let \(f : (\mathbb{R}, \mu) \rightarrow (\mathbb{R}, \lambda)\) be the identity function. Then \(f\) is contra \((\mu g, \lambda)\)-continuous but not contra \((\mu, \lambda)\)-continuous.

Proposition 1. Let \(f : (X, \mu) \rightarrow (Y, \lambda)\) be a function. Suppose that \((X, \mu)\) is \(\mu\)-\(T_1\)-space. Then the following properties are equivalent:

(i) \(f\) is contra \((\mu g, \lambda)\)-continuous,

(ii) \(f\) is contra \((\mu, \lambda)\)-continuous.

Proof. This is clear.

Theorem 1. Suppose that \(GC(\mu)\) is closed under arbitrary intersections. Then the following are equivalent for a function \(f : (X, \mu) \rightarrow (Y, \lambda) :\)

(a) \(f\) is contra \((\mu g, \lambda)\)-continuous,

(b) The inverse image of each \(\lambda\)-closed set in \((Y, \lambda)\) is \(\mu g\)-open.

(c) For each \(x \in X\) and each \(\lambda\)-closed set \(B\) containing \(f(x)\), there exists a \(\mu g\)-open set \(A\) in \(X\) such that \(x \in A\) and \(f(A) \subset B\),

(d) \(f(cl_{\mu g}(A)) \subset \lambda\)-ker\((f(A))\) for every subset \(A\) of \(X\),

(e) \(cl_{\mu g}(f^{-1}(B)) \subset f^{-1}(\lambda\)-ker\((B))\) for every subset \(B\) of \(Y\).

Proof. (a) \(\Rightarrow\) (b): Let \(G\) be a \(\lambda\)-closed set in \(Y\). Then \(Y \setminus G\) is \(\lambda\)-open and by (a), \(f^{-1}(Y \setminus G) = X \setminus f^{-1}(G)\) is \(\mu g\)-closed. Thus \(f^{-1}(G)\) is \(\mu g\)-open.

(b) \(\Rightarrow\) (a): Let \(U \in \lambda\). Then \(Y \setminus U\) is \(\lambda\)-closed and by (b), \(f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)\) is \(\mu g\)-open, thus \(f^{-1}(U)\) is \(\mu g\)-closed. Hence, \(f\) is contra \((\mu g, \lambda)\)-continuous.

(c) \(\Rightarrow\) (b): Let \(B\) be a \(\lambda\)-closed set with \(x \in f^{-1}(B)\). Since \(f(x) \in B\), by (c) there exists a \(\mu g\)-open set \(A\) containing \(x\) such that \(f(A) \subset B\). It follows that \(x \in A \subset f^{-1}(B)\). Hence, \(f^{-1}(B)\) is \(\mu g\)-open.

(b) \(\Rightarrow\) (d): Let \(A\) be any subset of \(X\) and \(y \notin \lambda\)-ker\((f(A))\). Then by Lemma 1, there exists a \(\lambda\)-closed set \(F\) containing \(y\) such that \(f(A) \cap F = \emptyset\). Hence, we have \(A \cap f^{-1}(F) = \emptyset\) and \(cl_{\mu g}(A) \cap f^{-1}(F) = \emptyset\). Thus we obtain, \(f(cl_{\mu g}(A)) \cap F = \emptyset\) and \(y \notin f(cl_{\mu g}(A))\). Therefore, \(f(cl_{\mu g}(A)) \subset \lambda\)-ker\((f(A))\).
(d) \implies (e): Let B be any subset of Y. By (d) we have
\[f(cl_{\mu}(f^{-1}(B))) \subseteq \lambda \ker(f(f^{-1}(B))) \subseteq \lambda \ker(B). \]
and this implies
\[cl_{\mu}(f^{-1}(B)) \subseteq f^{-1}(f(cl_{\mu}(f^{-1}(B)))) \subseteq f^{-1}(\lambda \ker(B)) \]
Then we have the result \(cl_{\mu}(f^{-1}(B)) \subseteq f^{-1}(\lambda \ker(B)). \)

(e) \implies (a): Let B \in \lambda, then by (e), \(cl_{\mu}(f^{-1}(B)) \subseteq f^{-1}(\lambda \ker(B)) = f^{-1}(B) \) and \(cl_{\mu}(f^{-1}(B)) = f^{-1}(B) \). Since GC(\mu) is closed under arbitrary intersections, \(f^{-1}(B) \) is \(\mu \)-closed in \((X, \mu)\).

Notation 1. Let \((X, \mu)\) and \((Y, \kappa)\) be generalized topological spaces, and let \(U = \{ U \times V : U \in \mu, V \in \kappa \} \). It is known that \(U \) generates a generalized topology \(\nu = \mu \times \kappa \) on \(X \times Y \), called the generalized product topology ([4], [11]) on \(X \times Y \), that is, \(\nu = \{ \) all possible unions of members of \(U \}\)

Theorem 2. Let \(f : (X, \mu) \to (Y, \lambda) \) be a function and \(g : (X, \mu) \to (X \times Y, \nu) \) be the graph function of \(f \), defined by \(g(x) = (x, f(x)) \) for every \(x \in X \). If \(g \) is contra \((\mu, \nu)\)-continuous, then \(f \) is \((\mu, \lambda)\)-continuous.

Proof. Let \(U \) be any \(\lambda \)-open set in \((Y, \lambda)\). By remark 1, \((X, \mu)\) is strong GTS, hence \(X \times U \) is a \(\nu \)-open set in \(X \times Y \). It follows that \(f^{-1}(U) = g^{-1}(X \times U) \) is \(\mu \)-closed. Thus, \(f \) is contra \((\mu, \lambda)\)-continuous.

Definition 6. For a function \(f : (X, \mu) \to (Y, \lambda), \) the subset \(\{(x, f(x)) : x \in X\} \subseteq X \times Y \) is called the graph of \(f \) and is denoted by \(G(f) \).

Definition 7. Let \((X, \mu)\) and \((Y, \lambda)\) are two GTS’s, consider \(\nu \) as generalized product space of the \(\mu \) and \(\lambda \) on \(X \times Y \). The graph \(G(f) \) of a function \(f : (X, \mu) \to (Y, \lambda) \) is said to be contra \(\nu \mu \)-closed graph if for each \((x, y) \in (X \times Y) \setminus G(f), \) there exists a \(\mu \)-open set \(U \) in \(X \) containing \(x \) and a \(\lambda \)-closed set \(V \) in \(Y \) containing \(y \) such that \((U \times V) \cap G(f) = \emptyset \).

Proposition 2. The following properties are equivalent for the graph \(G(f) \) of a function \(f : (X, \mu) \to (Y, \lambda) : \)

(a) \(G(f) \) is contra \(\nu \mu \)-closed graph,
(b) For each \((x, y) \in (X \times Y) \setminus G(f), \) there exists a \(\mu \)-open set \(U \) in \(X \) containing \(x \) and a \(\lambda \)-closed set \(V \) in \(Y \) containing \(y \) such that \(f(U) \cap V = \emptyset \).

Proof. (a) \(\implies \) (b): Let \((x, y) \in (X \times Y) \setminus G(f). \) By (a), there exists a \(\mu \)-open set \(U \) in \(X \) containing \(x \) and a \(\lambda \)-closed set in \(Y \) containing \(y \)
such that \((U \times V) \cap G(f) = \emptyset\). Since \((x, y) \notin G(f), x \in U, y \in V\) we have \(f(x) \neq y\) and therefore \(f(U) \cap V = \emptyset\).

\((b) \implies (a)\): Let \((x, y) \in (X \times Y) \setminus G(f)\). By \((b)\), there exists a \(\mu\)-open set \(U\) in \(X\) containing \(x\) and a \(\lambda\)-closed set \(V\) in \(Y\) containing \(y\) such that \(f(U) \cap V = \emptyset\). Hence, \((x, y) \in (U \times V) \subset (X \times Y) \setminus G(f)\). ■

Theorem 3. If \(f : (X, \mu) \to (Y, \lambda)\) is contra \((\mu, \lambda)\)-continuous function and \((Y, \lambda)\) is \(\lambda\)-Urysohn, then \(G(f)\) is contra \(\nu\)-closed.

Proof. Let \((x, y) \in (X \times Y) \setminus G(f)\). It follows that \(f(x) \neq y\). Since \((Y, \lambda)\) is \(\lambda\)-Urysohn, there exist \(\lambda\)-open sets \(B\) and \(C\) such that \(f(x) \in B, y \in C\) and \(c_\lambda(B) \cap c_\lambda(C) = \emptyset\). Since \(f\) is contra \((\mu, \lambda)\)-continuous, there exists a \(\mu\)-open set \(A\) in \(X\) containing \(x\) such that \(f(A) \subset c_\lambda(B)\). Therefore, \(f(A) \cap c_\lambda(C) = \emptyset\) and \(G(f)\) is contra \(\nu\)-closed graph in \(X \times Y\). ■

Theorem 4. Let \(\{(X_i, \mu_i) : i \in I\}\) be any family of strong GTS’ s. If \(f : (X, \mu) \to (\Pi X_i, \nu)\) is contra \((\mu, \nu)\)-continuous, then \(p_i \circ f : (X, \mu) \to (X_i, \mu_i)\) is contra \((\mu, \mu_i)\)-continuous for each \(i \in I\), where \(p_i\) is the projection of \((\Pi X_i, \nu)\) onto \((X_i, \mu_i)\).

Proof. We shall consider a fixed \(i \in I\). Suppose \(U_i\) is an arbitrary \(\mu_i\)-open set of \(X_i\). Since each \((X_i, \mu_i)\) is strong GTS, \(p_i\) is \((\nu, \mu_i)\)-continuous by Proposition 2.7 of [4], that is \(p_i^{-1}(U_i)\) is \(\nu\)-open in \((\Pi X_i, \nu)\). Since \(f\) is contra \((\mu, \nu)\)-continuous, we have \(f^{-1}(p_i^{-1}(U_i)) = (p_i \circ f)^{-1}(U_i)\) is \(\mu_i\)-\(\nu\)-closed. Therefore, \(p_i \circ f\) is contra \((\mu, \mu_i)\)-continuous. ■

Definition 8. A GTS \((X, \mu)\) is said to be locally \(\mu\)-indiscrete if every \(\mu\)-open set of \((X, \mu)\) is \(\mu\)-closed.

Theorem 5. If \(f : (X, \mu) \to (Y, \lambda)\) is contra \((\mu, \lambda)\)-continuous with \((X, \mu)\) is locally \(\mu\)-indiscrete, then \(f\) is contra \((\mu, \lambda)\)-continuous.

Proof. This is clear. ■

Theorem 6. Suppose that \((X, \mu)\), \((Y, \lambda)\) are two GTS’s and \(GO(\mu)\) is closed under arbitrary unions. If a function \(f : (X, \mu) \to (Y, \lambda)\) is contra \((\mu, \lambda)\)-continuous and \((Y, \lambda)\) is \(\lambda\)-regular, then \(f\) is \((\mu, \lambda)\)-continuous.

Proof. Let \(x\) be an arbitrary point of \((X, \mu)\) and \(V\) be a \(\lambda\)-open set of \(Y\) containing \(f(x)\). Since \((Y, \lambda)\) is \(\lambda\)-regular, there exists a \(\lambda\)-open set \(G\) in \(Y\) containing \(f(x)\) such that \(c_\lambda(G) \subset V\). Because \(f\) is contra \((\mu, \lambda)\)-continuous, there exists \(U \in GO(\mu)\) containing \(x\) such that \(f(U) \subset c_\lambda(G)\). Then \(f(U) \subset c_\lambda(G) \subset V\). Hence, \(f\) is \((\mu, \lambda)\)-continuous. ■
Theorem 7. Let \((X, \mu)\) be a \(\mu\)-connected GTS and \((Y, \lambda)\) be any GTS. If there is surjective, contra \((\mu, \lambda)\)-continuous function \(f : (X, \mu) \rightarrow (Y, \lambda)\), then \((Y, \lambda)\) is \(\lambda\)-connected.

Proof. Let \(f : (X, \mu) \rightarrow (Y, \lambda)\) be a contra \((\mu, \lambda)\)-continuous, surjective function of a \(\mu\)-connected space \((X, \mu)\) to a GTS \((Y, \lambda)\). Suppose that \((Y, \lambda)\) is \(\lambda\)-disconnected. Let \(A\) and \(B\) form a disconnection of \((Y, \lambda)\). Then \(A\) and \(B\) are \(\lambda\)-open and \(Y = A \cup B\) where \(A \cap B = \emptyset\). Since \(f\) is contra \((\mu, \lambda)\)-continuous and surjective, \(X = f^{-1}(A) \cup f^{-1}(B)\) where \(f^{-1}(A)\) and \(f^{-1}(B)\) are nonempty \(\mu\)-closed sets in \((X, \mu)\). Also \(f^{-1}(A) \cap f^{-1}(B) = \emptyset\), so \(f^{-1}(A)\) and \(f^{-1}(B)\) are \(\mu\)-open. This contradicts with the fact that \((X, \mu)\) is \(\mu\)-connected. Hence \((Y, \lambda)\) is \(\lambda\)-connected. \(\blacksquare\)

Theorem 8. Let \((X, \mu)\) be \(\mu\)-connected. Then each contra \((\mu, \lambda)\)-continuous function of \(X\) into a \(\lambda\)-discrete GTS \((Y, \lambda)\) with at least two points is a constant function.

Proof. Let \(f : (X, \mu) \rightarrow (Y, \lambda)\) be a contra \((\mu, \lambda)\)-continuous function and \((X, \mu)\) be a \(\mu\)-connected GTS. Then \((X, \mu)\) is covered by \(\mu\)-open and \(\mu\)-closed covering \(\{f^{-1}\{\{y\}\} : y \in Y\}\). By assumption, \(f^{-1}\{\{y\}\} = \emptyset\) or \(X\) for each \(y \in Y\). If \(f^{-1}\{\{y\}\} = \emptyset\) for all \(y \in Y\), then it fails to be a function. Then there exists only one point \(y \in Y\) such that \(f^{-1}\{\{y\}\} \neq \emptyset\) and hence \(f^{-1}\{\{y\}\} = X\) which shows that \(f\) is a constant function. \(\blacksquare\)

Theorem 9. If \(f\) is a contra \((\mu, \lambda)\)-continuous function from a \(\mu\)-connected GTS \((X, \mu)\) onto a GTS \((Y, \lambda)\), then \(Y\) is not a \(\lambda\)-discrete space.

Proof. Suppose that \((Y, \lambda)\) is \(\lambda\)-discrete. Let \(A\) be a proper nonempty \(\lambda\)-open and \(\lambda\)-closed subset of \((Y, \lambda)\). Then \(f^{-1}(A)\) is a proper nonempty \(\mu\)-open subset of \((X, \mu)\), which is a contradiction with the fact that \((X, \mu)\) is \(\mu\)-connected. \(\blacksquare\)

Definition 9. A GTS \((X, \mu)\) is said to be \(\mu\)-normal (resp. \(\mu\)-normal [10]) if each pair of nonempty \(\mu\)-closed sets can be separated by disjoint \(\mu\)-open (resp. \(\mu\)-open) sets.

Theorem 10. If \(f : (X, \mu) \rightarrow (Y, \lambda)\) is a contra \((\mu, \lambda)\)-continuous, \((\mu, \lambda)\)-closed, injection and \((Y, \lambda)\) is \(\lambda\)-normal, then \((X, \mu)\) is \(\mu\)-normal.

Proof. Let \(F_1, F_2\) be disjoint \(\mu\)-closed subsets of \((X, \mu)\). Since \(f\) is \((\mu, \lambda)\)-closed and injective, \(f(F_1)\) and \(f(F_2)\) are disjoint \(\lambda\)-closed subset of \((Y, \lambda)\). \(f(F_1)\) and \(f(F_2)\) are separated by disjoint \(\lambda\)-open sets \(V_1, V_2\), respectively, because \((Y, \lambda)\) is \(\lambda\)-normal. Hence, \(F_i \subset f^{-1}(V_i)\) and \(f^{-1}(V_i)\) is \(\mu\)-open in \((X, \mu)\) for \(i = 1, 2\) and \(f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset\). Thus, \((X, \mu)\) is \(\mu\)-normal. \(\blacksquare\)
4. Composition properties

Remark 3. Let \(f : (X, \mu) \to (Y, \lambda) \) be contra \((\mu g, \lambda)\)-continuous and \(g : (Y, \lambda) \to (Z, \nu) \) be contra \((\lambda g, \nu)\)-continuous. Then, the composition \(g \circ f : (X, \mu) \to (Z, \nu) \) need not be contra \((\mu g, \nu)\)-continuous.

Example 2. Let \(\mathbb{R} \) be the set of real numbers, \(\mu = \{\emptyset, \mathbb{R}\setminus\{-1\}, \mathbb{R}\setminus\{1\}, \mathbb{R}\setminus\{-1, 1\}, \mathbb{R}\} \), \(\lambda = \{\emptyset, \mathbb{R}\setminus\{0\}, \mathbb{R}\setminus\{0, 1\}, \mathbb{R}\} \) and \(\nu = \{\emptyset, \mathbb{R}\setminus\{-1, 1\}, \mathbb{R}\} \). Then the identity function \(f : (\mathbb{R}, \mu) \to (\mathbb{R}, \lambda) \) is contra \((\mu g, \lambda)\)-continuous and the identity function \(g : (\mathbb{R}, \lambda) \to (\mathbb{R}, \nu) \) is contra \((\lambda g, \nu)\)-continuous. But the composition \(g \circ f : (\mathbb{R}, \mu) \to (\mathbb{R}, \nu) \) is not contra \((\mu g, \nu)\)-continuous.

Theorem 11. Let \((X, \mu), (Z, \nu) \) be two GTS’s and \((Y, \lambda)\) be a \(\lambda\)-\(T^*_2\)-space. Let \(f : (X, \mu) \to (Y, \lambda) \) be \((\mu, \lambda)\)-irresolute function and \(g : (Y, \lambda) \to (Z, \nu) \) be contra \((\lambda g, \nu)\)-continuous. Then \(g \circ f : (X, \mu) \to (Z, \nu) \) is contra \((\mu g, \nu)\)-continuous.

Proof. Let \(F \) be any \(\nu \)-open subset of \((Z, \nu)\). Since \(g \) is contra \((\lambda g, \nu)\)-continuous, \(f^{-1}(F) \) is \(\lambda g \)-closed in \((Y, \lambda)\). But \((Y, \lambda)\) is \(\lambda\)-\(T^*_2\)-space, so \(f^{-1}(F) \) is \(\lambda \)-closed. Since \(f \) is \((\mu, \lambda)\)-irresolute, \(f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F) \) is \(\mu \)-closed. Since every \(\mu \)-closed set in a GTS \((X, \mu)\) is \(\mu g\)-closed, \(g \circ f : (X, \mu) \to (Z, \nu) \) is contra \((\mu g, \nu)\)-continuous.

Theorem 12. Let \(f : (X, \mu) \to (Y, \lambda) \) be \((\mu g, \lambda g)\)-irresolute function and \(g : (Y, \lambda) \to (Z, \nu) \) be contra \((\lambda g, \nu)\)-continuous function. Then \(g \circ f : (X, \mu) \to (Z, \nu) \) is contra \((\mu g, \nu)\)-continuous.

Proof. Let \(F \) be a \(\nu \)-open set in \((Z, \nu)\). Then \(g^{-1}(F) \) is \(\lambda g \)-closed in \((Y, \lambda)\), because \(g \) is contra \((\lambda g, \nu)\)-continuous. Since \(f \) is \((\mu g, \lambda g)\)-irresolute, \(f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F) \) is \(\mu g \)-closed. Thus, \(g \circ f : (X, \mu) \to (Z, \nu) \) is contra \((\mu g, \nu)\)-continuous.

Corollary 1. Let \(f : (X, \mu) \to (Y, \lambda) \) be \((\mu g, \lambda g)\)-irresolute and \(g : (Y, \lambda) \to (Z, \nu) \) be contra \((\lambda, \nu)\)-continuous function. Then \(g \circ f : (X, \mu) \to (Z, \nu) \) is contra \((\mu g, \nu)\)-continuous.

Definition 10. A function \(f : (X, \mu) \to (Y, \lambda) \) is said to be pre-(\(\mu g, \lambda g\))-open if the image of every \(\mu g\)-open set is \(\lambda g\)-open.

Theorem 13. Let \(f : (X, \mu) \to (Y, \lambda) \) be surjective, \((\mu g, \lambda g)\)-irresolute, pre-(\(\mu g, \lambda g\))-open function and \(g : (Y, \lambda) \to (Z, \nu) \) be any function. Then \(g \circ f : (X, \mu) \to (Z, \nu) \) is contra \((\mu g, \nu)\)-continuous if \(g \) is contra \((\lambda g, \nu)\)-continuous.

Proof. Let \(g : (Y, \lambda) \to (Z, \nu) \) be a contra \((\lambda g, \nu)\)-continuous function and \(F \) be a \(\nu \)-open subset of \((Z, \nu)\). Since \(g \) is contra \((\lambda g, \nu)\)-continuous,
$g^{-1}(F)$ is λg-closed. But $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is μg-closed because f is $(\mu g, \lambda g)$-irresolute. Thus, $g \circ f : (X, \mu) \to (Z, \nu)$ is contra $(\mu g, \nu)$-continuous.

Conversely, let $g \circ f : (X, \mu) \to (Z, \nu)$ be contra $(\mu g, \nu)$-continuous and let F be a ν-closed subset of (Z, ν). Then, $(g \circ f)^{-1}(F)$ is a μg-open. Since f is pre-$(\mu g, \lambda g)$-open and surjective, $f(f^{-1}(g^{-1}(F))) = g^{-1}(F)$ is λg-open. Hence, $g : (Y, \lambda) \to (Z, \nu)$ is contra $(\lambda g, \nu)$-continuous.

Theorem 14. If $f : (X, \mu) \to (Y, \lambda)$ is $(\mu g, \lambda g)$-irresolute function with (Y, λ) as locally λg-indiscrete space and $g : (Y, \lambda) \to (Z, \nu)$ is contra $(\lambda g, \nu)$-continuous function, then $g \circ f : (X, \mu) \to (Z, \nu)$ is $(\mu g, \nu)$-continuous.

Proof. Let F be a ν-closed subset of (Z, ν). Since, g is contra $(\lambda g, \nu)$-continuous, $g^{-1}(F)$ is λg-open in (Y, λ). But (Y, λ) is locally λg-indiscrete, so $g^{-1}(F)$ is λg-closed. Since f is $(\mu g, \lambda g)$-irresolute, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is μg-closed. Therefore, $g \circ f$ is $(\mu g, \nu)$-continuous.

5. Some covering and separation properties

Definition 11. A GTS (X, μ) is said to be

(a) μg-compact if every μg-open cover of (X, μ) has a finite subcover,

(b) strongly μ-S-closed if every μ-closed cover of (X, μ) has a finite subcover,

(c) countably μg-compact if every countable cover of (X, μ) by μg-open sets has a finite subcover,

(d) strongly countably μ-S-closed if every countable cover of (X, μ) by μ-closed sets has a finite subcover,

(e) μg-Lindelöf if every μg-open cover of (X, μ) has a countable subcover,

(f) strongly μ-S-Lindelöf if every μ-closed cover of (X, μ) has a countable subcover.

Theorem 15. The surjective contra $(\mu g, \lambda)$-continuous image of a μg-compact (resp. μg-Lindelöf, countably μg-compact) space is strongly λ-S-closed (resp. strongly λ-S-Lindelöf, strongly countable λ-S-closed).

Proof. Suppose that $f : (X, \mu) \to (Y, \lambda)$ is a contra $(\mu g, \lambda)$-continuous surjection. Let $\{V_\alpha : \alpha \in \nabla\}$ be any λ-closed cover of (Y, λ). Since f is contra $(\mu g, \lambda)$-continuous, $\{f^{-1}(V_\alpha) : \alpha \in \nabla\}$ is a μg-open cover of X and hence there exists a finite subset ∇_0 of ∇ such that $X = \bigcup_{\alpha \in \nabla_0} f^{-1}(V_\alpha)$. Therefore we have, $Y = \bigcup_{\alpha \in \nabla_0} V_\alpha$ and (Y, λ) is strongly λ-S-closed.

The other proofs can be obtained similarly.

Definition 12. A GTS (X, μ) is said to be
(a) μg-closed-compact if every μg-closed cover of (X, μ) has a finite subcover,
(b) countably μg-closed compact if every countable cover of (X, μ) by μg-closed sets has a finite subcover,
(c) μg-closed-Lindelöf if every μg-closed cover of (X, μ) has a countable subcover.

Theorem 16. Surjective, contra $(\mu g, \lambda)$-continuous image of a μg-closed compact (resp. μg-closed Lindelöf, countably μg-closed compact) space is λ-compact (resp. λ-Lindelöf, countably λ-compact).

Proof. Suppose that $f : (X, \mu) \to (Y, \lambda)$ is a contra $(\mu g, \lambda)$-continuous surjection. Let $\{V_\alpha : \alpha \in \nabla\}$ be any λ-open cover of (Y, λ). Since f is contra $(\mu g, \lambda)$-continuous, $\{f^{-1}(V_\alpha) : \alpha \in \nabla\}$ is a μg-closed cover of (X, μ), hence there exists a finite subset ∇_0 of ∇ such that $X = \bigcup_{\alpha \in \nabla_0} f^{-1}(V_\alpha)$. Therefore we have $Y = \bigcup_{\alpha \in \nabla_0} V_\alpha$ and Y is λ-compact. The other proofs can be obtained similarly. \blacksquare

Definition 13. A GTS (X, μ) is said to be μg-T_1 if for each pair of distinct points x and y in (X, μ), there exist μg-open sets U and V containing x and y respectively, such that $y \notin U$ and $x \notin V$.

Definition 14. A GTS (X, μ) is said to be μg-T_2 if for each pair of distinct points x and y in (X, μ), there exist disjoint μg-open sets U and V containing x and y respectively.

Theorem 17. Let $(X, \mu), (Y, \lambda)$ be two GTS’s. If

(a) for each pair of distinct points x and y in (X, μ), there exists a function f of X on to Y such that $f(x) \neq f(y)$,
(b) (Y, λ) is λ-Urysohn space, and
(c) f is contra $(\mu g, \lambda)$-continuous at x and y.

Then (X, μ) is μg-T_2.

Proof. Let x and y be distinct points in (X, μ), from the hypothesis by (b) there exists a λ-Urysohn space (Y, λ), by (a) there exists a function $f : (X, \mu) \to (Y, \lambda)$ such that $f(x) \neq f(y)$ and by (c) f is contra $(\mu g, \lambda)$-continuous at x and y. Let $v = f(x)$ and $w = f(y)$, then $v \neq w$. Since (Y, λ) is λ-Urysohn, there exists λ-open sets V and W containing v and w respectively, such that $c_\lambda(V) \cap c_\lambda(W) = \emptyset$. Since f is contra $(\mu g, \lambda)$-continuous at x and y, there exist μg-open sets A and B containing x and y respectively, such that $f(A) \subset c_\lambda(V)$ and $f(B) \subset c_\lambda(W)$. We have $A \cap B = \emptyset$ since $c_\lambda(V) \cap c_\lambda(W) = \emptyset$. Hence, (X, μ) is μg-T_2. \blacksquare
Theorem 18. If \(f : (X, \mu) \rightarrow (Y, \lambda) \) is a contra \((\mu, \lambda)\)-continuous injection and \((Y, \lambda)\) is weakly \(\lambda\)-Hausdorff, then \((X, \mu)\) is \(\mu\)-T\(_1\).

Proof. Suppose that \((Y, \lambda)\) is weakly \(\lambda\)-Hausdorff, then for any pair of distinct points \(x \neq y\) in \((X, \mu)\), there exist \(\lambda\)-closed sets \(A, B\) in \((Y, \lambda)\) such that \(f(x) \in A\), \(f(x) \notin B\) and \(f(y) \in B\), \(f(y) \notin A\). Since \(f\) is contra \((\mu, \lambda)\)-continuous, \(f^{-1}(A)\) and \(f^{-1}(B)\) are \(\mu\)-open subsets of \((X, \mu)\) such that \(x \in f^{-1}(A)\), \(x \notin f^{-1}(B)\) and \(y \in f^{-1}(B)\), \(y \notin f^{-1}(A)\). Hence, \((X, \mu)\) is \(\mu\)-T\(_1\).

Theorem 19. Let \(f : (X, \mu) \rightarrow (Y, \lambda) \) have a contra \((\mu, \lambda)\)-closed graph. If \(f \) is injective, then \((X, \mu)\) is \(\mu\)-T\(_1\).

Proof. Let \(x\) and \(y\) be distinct points in \((X, \mu)\). Then we have \((x, f(y)) \in (X \times Y) \setminus G(f)\). Then, there exists a \(\mu\)-open set \(U\) in \((X, \mu)\) containing \(x\) and a \(\lambda\)-closed set \(F\) containing \(f(y)\) such that \(f(U) \cap F = \emptyset\). Hence, \(U \cap f^{-1}(F) = \emptyset\). Therefore, we have \(y \notin U\). This implies \((X, \mu)\) is \(\mu\)-T\(_1\).

Theorem 20. Let \(f : (X, \mu) \rightarrow (Y, \lambda) \) be a contra \((\mu, \lambda)\)-continuous injection. If \((Y, \lambda)\) is ultra \(\lambda\)-Hausdorff, then \((X, \mu)\) is \(\mu\)-T\(_2\).

Proof. Let \(x\) and \(y\) be two distinct points in \((X, \mu)\). Then \(f(x) \neq f(y)\) and there exist \(\lambda\)-clopen sets \(A, B\) containing \(f(x)\), \(f(y)\) respectively, such that \(A \cap B = \emptyset\). Since \(f\) is contra \((\mu, \lambda)\)-continuous, then \(f^{-1}(A)\), \(f^{-1}(B)\) are \(\mu\)-open sets such that \(f^{-1}(A) \cap f^{-1}(B) = \emptyset\). Hence, \((X, \mu)\) is \(\mu\)-T\(_2\).

References

Uğur Şengül
Department of Mathematics
Faculty of Science and Letters
Marmara University
34722, Göztepe-İstanbul, Turkey
e-mail: usengul@marmara.edu.tr

Seda Nur Dündar
Institute of Pure and Applied Sciences
Marmara University
34722, Göztepe-İstanbul, Turkey
e-mail: seda.n. Dundar@gmail.com

Received on 17.02.2017 and, in revised form, on 03.11.2017.