ON SOME RECENT FIXED POINT RESULTS FOR SINGLE AND MULTI-VALUED MAPPINGS IN b-METRIC SPACES

Abstract. The main purpose of this paper is to improve and correct some results in b-metric spaces. Moreover, we prove that some results can be slightly relaxed and also we explore some proof techniques which provide short proofs of the results.

Key words: b-metric space, b-complete, b-Cauchy, b-continuous, Picard sequence, multi-valued mapping.

AMS Mathematics Subject Classification: 47H10, 54H25.

1. Definitions, notations and preliminaries

We start our exposition with the next result which will prove extremely useful in the sequel.

Lemma 1 ([15]). Let (X, d, s) be a b-metric space and $\{x_n\}_{n \in \mathbb{N}}$ a sequence in X. If there exists $\gamma \in [0, 1)$ such that

$$d(x_{n+1}, x_n) \leq \gamma d(x_n, x_{n-1})$$

for all $n \in \mathbb{N}$, then $\{x_n\}_{n \in \mathbb{N}}$ is a b-Cauchy sequence.

Otherwise, for more details on b-metric spaces we refer the reader to ([1]–[5], [8]–[11], [13]–[15], [17]–[21]).

In [6], authors proved some fixed point theorems in b-metric spaces. We will restrict our attention to the following two results.

Theorem 1 ([6] Theorem 1). Let $(X, d, s \geq 1)$ be a complete b-metric space and define the sequence $\{x_n\}$ in X by the recursion

$$x_n = T x_{n-1} = T^n x_0.$$
Let \(T : X \to X \) be a mapping such that

\[
d(Tx, Ty) \leq \lambda_1 d(x, y) + \lambda_2 d(x, Tx) + \lambda_3 d(y, Ty) + \lambda_4 [d(y, Tx) + d(x, Ty)]
\]

for all \(x, y \in X \), where \(\lambda_1 + 2s\lambda_2 + \lambda_3 + 2s\lambda_4 \leq 1 \).

Then there exists \(x^* \in X \) such that \(x_n \to x^* \) and \(x^* \) is a unique fixed point.

Remark 1. The condition \(\lambda_1 + 2s\lambda_2 + \lambda_3 + 2s\lambda_4 \leq 1 \) should be replaced by

\[
\lambda_i \geq 0, \; i = 1, 4, \quad \lambda_1 + 2s\lambda_2 + \lambda_3 + 2s\lambda_4 < 1.
\]

Indeed, for \(\lambda_2 = \lambda_3 = \lambda_4 = 0, \lambda_1 = 1 \) and \(s = 1 \), we have

\[
d(Tx, Ty) \leq d(x, y), \quad x, y \in X.
\]

For \(T = I_X \), Theorem 1 is not valid, since the fixed point of \(T \) is not unique.

If \(s = 1 \), then \((X, d)\) is a metric space and the condition (1) implies

\[
d(Tx, Ty) \leq k \max \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(y, Tx) + d(x, Ty)}{2} \right\},
\]

where \(k = \lambda_1 + \lambda_2 + \lambda_3 + 2\lambda_4 < 1 \). Note that

\[
\lambda_1 + \lambda_2 + \lambda_3 + 2\lambda_4 \leq \lambda_1 + 2\lambda_2 + \lambda_3 + 2\lambda_4 < 1.
\]

With (2) we recover the well known result for generalized Ćirić contraction map in the metric space and obtain a unique fixed point.

Remark 2. Let us note that the condition \(\lambda_1 + 2s\lambda_2 + \lambda_3 + 2s\lambda_4 < 1 \) from [6] implies the condition \(\lambda_1 + \lambda_2 + \lambda_3 + 2s\lambda_4 < 1 \). Now, according to the new condition, we can improve the proof of Theorem 1 from [6]. Firstly, the proof that \(\{x_n\} \) is a \(b \)-Cauchy sequence can be shorter than that in [6]. Indeed, if \(x_n \neq x_{n-1} \), for all \(n \in \mathbb{N} \), we have

\[
d(Tx_{n-1}, Tx_n) \leq \lambda_1 d(x_{n-1}, x_n) + \lambda_2 d(x_{n-1}, x_n) + \lambda_3 d(x_n, x_{n+1}) + \lambda_4 sd(x_{n-1}, x_n) + \lambda_4 sd(x_n, x_{n+1}),
\]

and also

\[
d(Tx_n, Tx_{n-1}) \leq \lambda_1 d(x_n, x_{n-1}) + \lambda_2 d(x_n, x_{n+1}) + \lambda_3 d(x_{n-1}, x_n) + \lambda_4 sd(x_{n-1}, x_n) + \lambda_4 sd(x_n, x_{n+1}).
\]
It follows easily that $d(x_{n+1}, x_n) \leq kd(x_n, x_{n-1})$ where

$$k = \max \left\{ \frac{\lambda_1 + \lambda_3 + s\lambda_4}{1 - \lambda_2 - s\lambda_4}, \frac{\lambda_1 + \lambda_2 + s\lambda_4}{1 - \lambda_3 - s\lambda_4} \right\} < 1,$$

and according to Lemma 1, we have that $\{x_n\}$ is a b-Cauchy sequence.

Remark 3. It is not hard to check that the proof of Theorem 1 in [6] is not correct (see pages 3 and 4). Really, the fact that $x^* = \lim_{n \to \infty} x_n$ is the fixed point of T is not clear enough since it was not shown that $k < 1$.

We prove this with the new condition $\lambda_1 + \lambda_2 + \lambda_3 + 2s\lambda_4 < 1$.

$$\frac{1}{s}d(x^*, Tx^*) \leq d(x^*, x_{n+1}) + d(Tx_n, Tx^*)$$

$$\leq d(x^*, x_{n+1}) + \lambda_1 d(x_n, x^*) + \lambda_2 d(x_n, x_{n+1}) + \lambda_3 d(x^*, Tx^*) + \lambda_4 d(x^*, x_{n+1}) + \lambda_4 s d(x_n, x^*) + \lambda_4 s d(x^*, Tx^*)$$

$$\leq (1 + \lambda_4) d(x^*, x_{n+1}) + (\lambda_1 + \lambda_4 s) d(x_n, x^*) + \lambda_2 d(x_n, x_{n+1}) + (\lambda_3 + \lambda_4 s) d(x^*, Tx^*),$$

or

$$\left(\frac{1}{s} - \lambda_3 - \lambda_4 s \right) d(x^*, Tx^*) \leq (1 + \lambda_4) d(x^*, x_{n+1}) + (\lambda_1 + \lambda_4 s) d(x_n, x^*) + \lambda_2 d(x_n, x_{n+1}) + (\lambda_3 + \lambda_4 s) d(x^*, Tx^*),$$

(3)

Similarly,

$$\frac{1}{s}d(x^*, Tx^*) \leq d(x^*, x_{n+1}) + d(Tx_n, Tx^*)$$

$$\leq (1 + \lambda_4) d(x^*, x_{n+1}) + (\lambda_1 + \lambda_4 s) d(x_n, x^*) + \lambda_3 d(x_n, x_{n+1}) + (\lambda_2 + \lambda_4 s) d(x^*, Tx^*),$$

that is,

(4)

$$\left(\frac{1}{s} - \lambda_2 - \lambda_4 s \right) d(x^*, Tx^*) \leq (1 + \lambda_4) d(x^*, x_{n+1}) + (\lambda_1 + \lambda_4 s) d(x_n, x^*) + \lambda_3 d(x_n, x_{n+1}).$$
Adding (3) and (4) we obtain
\[
\left(\frac{2}{s} - \lambda_2 - \lambda_3 - 2\lambda_4 s\right) d(x^*, Tx^*) \leq 2 \left(1 + \lambda_4\right) d(x^*, x_{n+1}) + 2 \left(\lambda_1 + \lambda_4 s\right) d(x_n, x^*) + (\lambda_2 + \lambda_3) d(x_n, x_{n+1}) \to 0, \text{ as } n \to \infty.
\]

Hence, we can conclude the following.

Conclusion. Theorem 1 from [6] holds if the coefficients \(\lambda_i \geq 0, i = 1, 4\), satisfy at least one of the following conditions:

1. \(\lambda_1 + \lambda_2 + \lambda_3 + 2\lambda_4 < 1\) for \(s \in [1, 2]\);
2. \(\frac{2}{s} < \lambda_1 + \lambda_2 + \lambda_3 + 2\lambda_4 < 1\) for \(s \in (2, +\infty)\).

Our approach with the new condition \(\lambda_1 + \lambda_2 + \lambda_3 + 2s\lambda_4 < 1\) provides the generalization and improves Theorem 3.7 from [10], that is., Theorem 2.19 from [18].

Remark 4. Note that condition (2) for \(s > 1\) implies
\[
d(Tx, Ty) \leq k \max \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2s} \right\}
\]
where \(k = \lambda_1 + \lambda_2 + \lambda_3 + 2s\lambda_4\).

Theorem 2 ([6] Theorem 2). Let \((X, d, s \geq 1)\) be a complete b-metric space. Let \(T : X \to X\) be a mapping for which there exist \(\lambda_1, \lambda_2 \in [0, \frac{1}{3})\) such that
\[
d(Tx, Ty) \leq \lambda_1 d(x, y) + \lambda_2 [d(x, Tx) + d(y, Ty)],
\]
for all \(x, y \in X\).

Then there exists \(x^* \in X\) such that \(x_n \to x^*\) and \(x^*\) is the unique fixed point.

Remark 5. The proof of Theorem 2 is not correct since \(\frac{\lambda_1 + \lambda_2}{1 - \lambda_2} \leq 1\). We give the improved version of this theorem.

If \(s = 1\), then \((X, d)\) is a metric space and the condition \(\lambda_1 + 2\lambda_2 < 1\) is appropriate for metric spaces.

Let \(s > 1\). By the same method as in [6], we have
\[
d(x_n, x_{n+1}) \leq \frac{\lambda_1 + \lambda_2}{1 - \lambda_2} d(x_{n-1}, x_n) = kd(x_{n-1}, x_n).
\]

Since \(\lambda_1, \lambda_2 \in [0, \frac{1}{3})\), it follows that \(\frac{\lambda_1 + \lambda_2}{1 - \lambda_2} = k < 1\), and using Lemma 1, we can conclude that the sequence \(\{x_n\}\) is a b-Cauchy sequence.
The proof falls naturally into three parts.

Case 1°. If T is continuous, then $Tx_n \to Tx^*$ as $n \to \infty$, and $x^* = \lim_{n \to \infty} x_n$ is the fixed point of T.

Case 2°. If d is continuous, then substituting $x = x_n$ and $y = \lim_{n \to \infty} x_n$ in (5), we obtain

$$d(x_{n+1}, Tx^*) = d(Tx_n, Tx^*) \leq \lambda_1 d(x_n, x^*) + \lambda_2 [d(x_n, x_{n+1}) + d(x^*, Tx^*)].$$

Letting $n \to \infty$, it follows that

$$d(x^*, Tx^*) \leq \lambda_1 \cdot 0 + \lambda_2 \cdot 0 + \lambda_2 d(x^*, Tx^*),$$

i.e. $(1-\lambda_2)d(x^*, Tx^*) \leq 0$. Using the fact that $\lambda_2 \in [0, \frac{1}{s})$, we have $Tx^* = x^*$.

Case 3°. Neither 1° nor 2° is satisfied. Then

$$\frac{1}{s}d(x^*, Tx^*) \leq d(x^*, x_{n+1}) + d(Tx_n, Tx^*) \leq d(x^*, x_{n+1}) + \lambda_1 d(x_n, x^*) + \lambda_2 [d(x_n, x_{n+1}) + d(x^*, Tx^*)],$$

i.e. $(\frac{1}{s} - \lambda_2)d(x^*, Tx^*) \leq 0$. We conclude that T has a fixed point $x^* = \lim_{n \to \infty} x_n$ if $\lambda_2 < \frac{1}{s}$.

From what has already been proved, we deduce that T has a fixed point if $\lambda_2 < \min\{\frac{1}{s}, \frac{1}{3}\}$.

Now, we will show that our viewpoint sheds some new light on an interesting new result proved in [7].

Theorem 3 ([7] Theorem 2.2). Let $(X, d, s \geq 1)$ be a complete b-metric space and T, S self-mappings on X which satisfy

$$d (Sx, Ty) \leq a_1 d (x, Sx) + a_2 d (y, Ty) + a_3 d (x, Ty) + a_4 d (y, Sx) + a_5 d (x, y),$$

for all $x, y \in X$, where a_1, a_2, a_3, a_4, a_5 are nonnegative real numbers satisfying:

(i) $s^2 a_1 + s^2 a_2 + s^3 a_3 + s^3 a_4 + s^2 a_5 < 1$,

(ii) $a_1 = a_2$ or $a_3 = a_4$.

Then S and T have a unique common fixed point.

Remark 6. If $s = 1$, then (X, d) is a metric space with the assumptions

$$a_1 + a_2 + a_3 + a_4 + a_5 < 1, \quad a_1 = a_2 \quad \text{or} \quad a_3 = a_4.$$

It follows immediately that the condition (ii) is superfluous.
We will also prove that [[7] Theorem 2.4] is still true if we drop the assumption of function \(\varphi \). We repeat the relevant material from [7].

Definition 1. A function \(\psi : [0, \infty) \to [0, \infty) \) is said to be an altering distance function if \(\psi \) is continuous and strictly increasing and if \(\psi(t) = 0 \) if and only if \(t = 0 \).

Follow the notation used in [7], \(\Phi \) denotes the next set.

\[
\Phi = \left\{ \varphi : [0, \infty)^2 \to [0, \infty) \mid \varphi(0, 0) \geq 0, \; \varphi(x, y) > 0 \text{ if } (x, y) \neq (0, 0), \right. \\
\left. \varphi\left(\liminf_{n \to \infty} a_n, \liminf_{n \to \infty} b_n\right) \leq \liminf_{n \to \infty} \varphi(a_n, b_n) \right\}
\]

The next result is stated and proved in [7].

Theorem 4. Let \((X, d, s \geq 1)\) be a complete \(b \)-metric space and \(T, f \) self-mappings on \(X \) which satisfy

\[
\psi\left(\frac{sd(Tx, fy)}{s+1}\right) \leq 1 + \varphi\left(d(x, fy), d(y, Tx)\right),
\]

for all \(x, y \in X \), where \(\psi \) is an altering distance function, \(\varphi \in \Phi \) and \(T \) is continuous. Then \(T \) and \(f \) have a unique common fixed point.

Remark 7. We will now show how to dispense with the assumption on function \(\varphi \). Indeed, the condition (7) implies

\[
sd(Tx, fy) \leq \frac{d(x, fy)}{s+1} + \frac{d(y, Tx)}{s^3(s+1)},
\]

i.e.

\[
d(Tx, fy) \leq \frac{d(x, fy)}{s(s+1)} + \frac{d(y, Tx)}{s^4(s+1)} \\
\leq \frac{1}{s(s+1)}[d(x, fy) + d(y, Tx)].
\]

Let \(x_0 \in X \), \(x_1 = Tx_0 \) and \(x_2 = fx_1 \). Define the sequence \(\{x_n\} \) by \(x_{2n+1} = Tx_{2n} \) and \(x_{2n+2} = fx_{2n+1} \), for every \(n \geq 0 \). It follows that

\[
d(x_{2n+1}, x_{2n}) = d(Tx_{2n}, fx_{2n-1}) \\
\leq \frac{1}{s(s+1)}[d(x_{2n}, fx_{2n-1}) + d(x_{2n-1}, Tx_{2n})] \\
\leq \frac{1}{s(s+1)}[d(x_{2n}, x_{2n}) + d(x_{2n-1}, x_{2n+1})] \\
\leq \frac{1}{s(s+1)}d(x_{2n-1}, x_{2n+1})
\]
\[
\leq \frac{1}{s+1}[d(x_{2n-1}, x_{2n}) + d(x_{2n}, x_{2n+1})],
\]

and we obtain
\[
\left(1 - \frac{1}{s+1}\right) d(x_{2n+1}, x_{2n}) \leq \frac{1}{s+1} d(x_{2n-1}, x_{2n}),
\]
This clearly forces
\[
d(x_{2n+1}, x_{2n}) \leq \frac{1}{s} d(x_{2n-1}, x_{2n}).
\]

According to Lemma 1, we conclude that \(\{x_n\}\) is a \(b\)-Cauchy sequence.

In the notation of [21], \(\Psi\) stands for the family of all functions \(\psi, \varphi : [0, \infty) \to [0, \infty)\) with the properties:

(a) \(\varphi(t) < \psi(t)\) for each \(t > 0, \varphi(0) = \psi(0) = 0\);
(b) \(\varphi\) and \(\psi\) are continuous functions;
(c) \(\psi\) is increasing,

and \(\Theta\) denotes the set of all functions \(\theta : [0, \infty)^4 \to [0, \infty)\) satisfying the following conditions:

(a) \(\theta\) is continuous,
(b) \(\theta(p, q, r, s) = 0\) if and only if \(pqrs = 0\).

Example 1. The following functions belong to \(\Theta:\)

1) \(\theta(p, q, r, s) = k \min\{p, q, r, s\} + p \cdot q \cdot r \cdot s, \quad k > 0,\)
2) \(\theta(p, q, r, s) = \ln (1 + p \cdot q \cdot r \cdot s).\)

Also in [21], a partially ordered set in a \(b\)-metric space and a regular space were introduced.

Definition 2 ([21] Definition 2.1). Let \(X\) be a nonempty set. Then \((X, d, \preceq)\) is called a partially ordered \(b\)-metric space if \(d\) is a \(b\)-metric on a partially ordered set \((X, \preceq)\). The space \((X, d, \preceq)\) is called regular if the following condition holds: if a non-decreasing sequence \(\{x_n\}\) tends to \(x\), then \(x_n \preceq x\) for all \(n\).

The next theorem is the main result in [21].

Theorem 5. Suppose that \((X, d, s \geq 1, \preceq)\) is a partially ordered complete \(b\)-metric space and \(\{T_n\}\) a nondecreasing sequence of self maps on \(X\). If there exists a continuous function \(\alpha : X \times X \to [0, 1)\) such that for all \(x, y \in X\)
\[
\alpha(T_i x, T_j y) \leq a_{i,j} \alpha(x, y)
\]
and
\[
\psi\left(s^3 d(T_i x, T_j y)\right) \leq \alpha(x, y) \varphi(M_{i,j}(x, y)) + \theta(d(x, T_i x), d(y, T_j y), d(x, T_j y), d(y, T_i x)),
\]

and we obtain
\[
\left(1 - \frac{1}{s+1}\right) d(x_{2n+1}, x_{2n}) \leq \frac{1}{s+1} d(x_{2n-1}, x_{2n}),
\]

This clearly forces
\[
d(x_{2n+1}, x_{2n}) \leq \frac{1}{s} d(x_{2n-1}, x_{2n}).
\]

According to Lemma 1, we conclude that \(\{x_n\}\) is a \(b\)-Cauchy sequence.

In the notation of [21], \(\Psi\) stands for the family of all functions \(\psi, \varphi : [0, \infty) \to [0, \infty)\) with the properties:

(a) \(\varphi(t) < \psi(t)\) for each \(t > 0, \varphi(0) = \psi(0) = 0\);
(b) \(\varphi\) and \(\psi\) are continuous functions;
(c) \(\psi\) is increasing,

and \(\Theta\) denotes the set of all functions \(\theta : [0, \infty)^4 \to [0, \infty)\) satisfying the following conditions:

(a) \(\theta\) is continuous,
(b) \(\theta(p, q, r, s) = 0\) if and only if \(pqrs = 0\).

Example 1. The following functions belong to \(\Theta:\)

1) \(\theta(p, q, r, s) = k \min\{p, q, r, s\} + p \cdot q \cdot r \cdot s, \quad k > 0,\)
2) \(\theta(p, q, r, s) = \ln (1 + p \cdot q \cdot r \cdot s).\)

Also in [21], a partially ordered set in a \(b\)-metric space and a regular space were introduced.

Definition 2 ([21] Definition 2.1). Let \(X\) be a nonempty set. Then \((X, d, \preceq)\) is called a partially ordered \(b\)-metric space if \(d\) is a \(b\)-metric on a partially ordered set \((X, \preceq)\). The space \((X, d, \preceq)\) is called regular if the following condition holds: if a non-decreasing sequence \(\{x_n\}\) tends to \(x\), then \(x_n \preceq x\) for all \(n\).

The next theorem is the main result in [21].

Theorem 5. Suppose that \((X, d, s \geq 1, \preceq)\) is a partially ordered complete \(b\)-metric space and \(\{T_n\}\) a nondecreasing sequence of self maps on \(X\). If there exists a continuous function \(\alpha : X \times X \to [0, 1)\) such that for all \(x, y \in X\)
\[
\alpha(T_i x, T_j y) \leq a_{i,j} \alpha(x, y)
\]
and
\[
\psi\left(s^3 d(T_i x, T_j y)\right) \leq \alpha(x, y) \varphi(M_{i,j}(x, y)) + \theta(d(x, T_i x), d(y, T_j y), d(x, T_j y), d(y, T_i x))
\]

and we obtain
\[
\left(1 - \frac{1}{s+1}\right) d(x_{2n+1}, x_{2n}) \leq \frac{1}{s+1} d(x_{2n-1}, x_{2n}),
\]

This clearly forces
\[
d(x_{2n+1}, x_{2n}) \leq \frac{1}{s} d(x_{2n-1}, x_{2n}).
\]

According to Lemma 1, we conclude that \(\{x_n\}\) is a \(b\)-Cauchy sequence.

In the notation of [21], \(\Psi\) stands for the family of all functions \(\psi, \varphi : [0, \infty) \to [0, \infty)\) with the properties:

(a) \(\varphi(t) < \psi(t)\) for each \(t > 0, \varphi(0) = \psi(0) = 0\);
(b) \(\varphi\) and \(\psi\) are continuous functions;
(c) \(\psi\) is increasing,

and \(\Theta\) denotes the set of all functions \(\theta : [0, \infty)^4 \to [0, \infty)\) satisfying the following conditions:

(a) \(\theta\) is continuous,
(b) \(\theta(p, q, r, s) = 0\) if and only if \(pqrs = 0\).

Example 1. The following functions belong to \(\Theta:\)

1) \(\theta(p, q, r, s) = k \min\{p, q, r, s\} + p \cdot q \cdot r \cdot s, \quad k > 0,\)
2) \(\theta(p, q, r, s) = \ln (1 + p \cdot q \cdot r \cdot s).\)

Also in [21], a partially ordered set in a \(b\)-metric space and a regular space were introduced.

Definition 2 ([21] Definition 2.1). Let \(X\) be a nonempty set. Then \((X, d, \preceq)\) is called a partially ordered \(b\)-metric space if \(d\) is a \(b\)-metric on a partially ordered set \((X, \preceq)\). The space \((X, d, \preceq)\) is called regular if the following condition holds: if a non-decreasing sequence \(\{x_n\}\) tends to \(x\), then \(x_n \preceq x\) for all \(n\).

The next theorem is the main result in [21].

Theorem 5. Suppose that \((X, d, s \geq 1, \preceq)\) is a partially ordered complete \(b\)-metric space and \(\{T_n\}\) a nondecreasing sequence of self maps on \(X\). If there exists a continuous function \(\alpha : X \times X \to [0, 1)\) such that for all \(x, y \in X\)
\[
\alpha(T_i x, T_j y) \leq a_{i,j} \alpha(x, y)
\]
and
\[
\psi\left(s^3 d(T_i x, T_j y)\right) \leq \alpha(x, y) \varphi(M_{i,j}(x, y)) + \theta(d(x, T_i x), d(y, T_j y), d(x, T_j y), d(y, T_i x)),
\]

and we obtain
\[
\left(1 - \frac{1}{s+1}\right) d(x_{2n+1}, x_{2n}) \leq \frac{1}{s+1} d(x_{2n-1}, x_{2n}),
\]

This clearly forces
\[
d(x_{2n+1}, x_{2n}) \leq \frac{1}{s} d(x_{2n-1}, x_{2n}).
\]

According to Lemma 1, we conclude that \(\{x_n\}\) is a \(b\)-Cauchy sequence.
for all \(x, y \in X\) with \(x \preceq y\), where \((\psi, \varphi) \in \Psi, \theta \in \Theta\) and

\[
M_{i,j} (x, y) = \max \left\{ d(x, y), d(x, T_i x), d(y, T_j x), \frac{d(x, T_j y) + d(y, T_i x)}{2s} \right\},
\]

and \(0 \leq a_{i,j} \ (i, j \in \mathbb{N})\), satisfy

(i) \(A_n = \prod_{i=1}^{n} a_{i,i+1} < 1\), for all \(n\),

(ii) \(\lim_{i \to \infty} a_{i,j} < 1\), for each \(j\).

Suppose that:

(i) \(T\) is continuous, or

(ii) \((X, d, \preceq)\) is regular.

If there exists \(x_0 \in X\) such that \(x_0 \preceq T x_0\), then all \(T_n\)'s have a common fixed point in \(X\).

Remark 8. The proof of Theorem 5 can be much shorter using Lemma 1. Indeed, on page 59, the proof should start with \(\psi(s^3d(T_n(x_{n-1}), T_{n+1}(x_n)))\), and it follows that

\[
\psi(s^3d(T_n(x_{n-1}), T_{n+1}(x_n))) \\
\leq \alpha (x_{n-1}, x_n) \varphi (M_{n,n+1} (x_{n-1}, x_n)) \\
+ \theta (d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_{n+1}), d(x_n, x_n)) \\
= \alpha (x_{n-1}, x_n) \varphi (M_{n,n+1} (x_{n-1}, x_n)) \\
\leq A_{n-1} \alpha (x_0, x_1) \varphi (\max \{d(x_{n-1}, x_n), d(x_n, x_{n+1})\}).
\]

If \(\max \{d(x_{n-1}, x_n), d(x_n, x_{n+1}) = d(x_n, x_{n+1})\}\), then we have

\[
\psi(d(x_n, x_{n+1})) \leq \psi(s^3d(T_n(x_{n-1}), T_{n+1}(x_n))) \\
\leq A_{n-1} \alpha (x_0, x_1) \varphi (d(x_n, x_{n+1})) \\
\leq A_{n-1} \alpha (x_0, x_1) \psi(d(x_n, x_{n+1})) \\
< \psi(d(x_n, x_{n+1})),
\]

which is impossible.

We can conclude that \(\psi(s^3d(T_n(x_{n-1}), T_{n+1}(x_n))) \leq \psi(d(x_n, x_{n+1}))\). If \(x_n \neq x_{n+1}\) for all \(n \in \mathbb{N}\), then

\[
d(x_n, x_{n+1}) \leq \lambda d(x_{n-1}, x_n), \quad \lambda \leq \frac{1}{s^3}.
\]

By Lemma 1, the sequence \(\{x_n\}\) is a \(b\)-Cauchy sequence and \(x_n \to x\) as \(n \to +\infty\).

In [13] the authors defined Chatterjea’s type contraction in the context of \(b\)-metric spaces and proved the following result.
Theorem 6 ([13] Theorem 2.1). Let \((X, d, s \geq 1)\) be a complete b-metric space, \(d\) a continuous function, \(T : X \to X\) a Chatterjea’s map such that the inequality \(\sup_{n \in \mathbb{N}} d(T^n x, x) < \infty\) holds for all \(x \in X\). Then
(i) there exists a unique fixed point (say \(\xi\)) of \(T\);
(ii) for any \(x_0 \in X\) the sequence \(\{x_n\}\) converges to \(\xi\), where \(x_{n+1} = Tx_n\), \(n = 0, 1, 2, \ldots\);
(iii) there holds the a priori error estimate

\[
d(\xi, T^m x) \leq \alpha^m \sup_{j \in \mathbb{N}} d(T^j x, x).
\]

Recently, C. Chifu and G. Petrusel ([17], Theorem 2.1, Theorem 2.2.) considered the existence of fixed points for some multi-valued mappings in the context of b-metric spaces.

Theorem 7 ([17] Theorem 2.1). Let \((X, d, s > 1)\) be a complete b-metric space and \(T : X \to P(X)\) a multi-valued operator such that:
(i) there exist \(a, b, c \in \mathbb{R}_+, \ a + b + 2cs < \frac{s-1}{s^2}\) and \(b + cs < \frac{1}{s}\) such that
\[
H(T(x), T(y)) \leq ad(x, y) + b[D(x, T(x)) + D(y, T(y))] + c[D(x, T(y)) + D(y, T(x))],
\]
for all \(x, y \in X\);
(ii) \(T\) is closed.
In these conditions \(\text{Fix}(T) \neq \emptyset\).

Theorem 8 ([17] Theorem 2.2). Let \((X, d, s > 1)\) be a complete b-metric space and \(T : X \to P(X)\) a multi-valued operator such that:
(i) there exist \(a, b, c \in \mathbb{R}_+, \ a + b + 2cs < \frac{s-1}{s^2}\) and \(b + cs < \frac{1}{s}\) such that
\[
H(T(x), T(y)) \leq ad(x, y) + b[D(x, T(x)) + D(y, T(y))] + c[D(x, T(y)) + D(y, T(x))],
\]
for all \(x, y \in X\);
(ii) \(T\) is closed.
If \(\text{SFix}(T) \neq \emptyset\), then \(\text{SFix}(T) = \text{Fix}(T) = \{x\}\).

Remark 9. Note that we did not really have to use the condition \(b + cs < \frac{1}{s}\). Indeed, since \(a + b + 2cs < \frac{s-1}{s^2} = \frac{1}{s} - \frac{1}{s^2} < \frac{1}{s}\), then \(b + cs < a + b + 2cs < \frac{1}{s}\).

Remark 10. In Theorem 7 and 8, the contractive condition

\[
H(T(x), T(y)) \leq ad(x, y) + b[D(x, T(x)) + D(y, T(y))] + c[D(x, T(y)) + D(y, T(x))],
\]
where \(a + b + 2cs < \frac{s-1}{s^2} \), can be replaced by the next two conditions:

\[
H (T(x), T(y)) \leq a_1 d(x, y) + b_1 D(x, T(x)) + c_1 D(y, T(y)) + d_1 [D(x, T(y)) + D(y, T(x))],
\]

where \(a_1 + \frac{b_1 + c_1}{2} + 2d_1 s < \frac{s-1}{s^2} \) and

\[
H (T(x), T(y)) \leq \lambda_1 d(x, y) + \lambda_2 D(x, T(x)) + \lambda_3 D(y, T(y)) + \lambda_4 D(x, T(y)) + \lambda_5 D(y, T(x)),
\]

with \(\lambda_1 + \frac{\lambda_2 + \lambda_3}{2} + s(\lambda_4 + \lambda_5) < \frac{s-1}{s^2} \).

We will now show that all the above contractive conditions are equivalent to each other.

It is easily seen that (9) implies (10) and from (10) we have (11).

Substituting \(H (T(y), T(x)) \) into (11.1) and combining with (11), we obtain

\[
H (T(x), T(y)) \leq \lambda_1 d(x, y) + \frac{\lambda_2 + \lambda_3}{2} [D(x, T(x)) + D(y, T(y))] + \frac{\lambda_4 + \lambda_5}{2} [D(x, T(y)) + D(y, T(x))].
\]

When \(a = \lambda_1, b = \frac{\lambda_2 + \lambda_3}{2}, c = \frac{\lambda_4 + \lambda_5}{2} \), we have (9).

Each of them can be associated with the general conditions which are considered in the metric spaces:

\[
H (T(x), T(y)) \leq k_1 \max \left\{ d(x, y), \frac{D(x, Tx) + D(y, Ty)}{2s}, \frac{D(x, Ty) + D(y, Tx)}{2s} \right\},
\]

where \(k_1 = a + 2bs + 2cs \), and

\[
H (T(x), T(y)) \leq k_2 \max \left\{ d(x, y), D(x, Tx), D(y, Ty), \frac{D(x, Ty) + D(y, Tx)}{2s} \right\},
\]

with \(k_2 = a_1 + b_1 + c_1 + 2sd_1 \), and also

\[
H (T(x), T(y)) \leq k_3 \max \left\{ d(x, y), D(x, Tx), D(y, Ty), \frac{D(x, Ty) + D(y, Tx)}{2s} \right\},
\]

where \(k_3 = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 \).

It follows easily that (12) implies (13) and (13) implies (14).
References

Suzana Aleksić
University of Kragujevac
Faculty of Science
Department of Mathematics and Informatics
Radoja Domanovića 12
34000 Kragujevac, Serbia
e-mail: suzanasic@kg.ac.rs

Zoran D. Mitrović
University of Banja Luka
Faculty of Electrical Engineering
Patre 5, 78000 Banja Luka
Bosnia and Herzegovina
e-mail: zoran.mitrovic@etf.unibl.org

Stojan Radenović
King Saud University
College of Science
Department of Mathematics
Riyadh 11451, Saudi Arabia
e-mail: radens@beotel.rs

Received on 18.01.2018 and, in revised form, on 08.11.2018.