ON THE INDEFINITE INTEGRAL
OF A STEPANOV’S ALMOST PERIODIC FUNCTION

In the paper the author proves that if the indefinite integral of an S-almost periodic function is bounded, then this integral is a V-almost periodic function.

Key words and phrases: almost periodic function, indefinite integral.

1991 Mathematics Subject Classification: 42A75.

A set $E \subseteq (-\infty, \infty)$ is called relatively dense iff there is a positive number l such that in each open interval $(\alpha, \alpha+l)$, $\alpha \in (-\infty, \infty)$, there is at least one element of the set E.

Let x be a continuous function defined on the whole real axis and taking real values. If for $\varepsilon > 0$ there is

$$\sup_{-\infty < u < \infty} |x_{\tau}(u) - x(u)| \leq \varepsilon,$$

where $x_{\tau}(u) \equiv x(u + \tau)$, then the number τ is called ε - almost period of x. Let us denote the set of ε - almost periods of x by $E\{\varepsilon;x\}$. The function x is called uniformly almost periodic or a Bohr’s almost periodic function (B-a.p.) iff for each $\varepsilon > 0$ the set $E\{\varepsilon;x\}$ is relatively dense. For example the function x of the form

$$(1) \quad x(u) = \sin u + \sin(\sqrt{2}u)\quad \text{for } u \in (-\infty, \infty)$$

is uniformly almost periodic and x is not periodic. (See [1]).

Let us denote by L^p, where $p \geq 1$, the space of real functions x, measurable in the sense of Lebesgue for which

$$\int_a^b |x(s)|^p \, ds < \infty$$

for arbitrary $a, b \in (-\infty, \infty)$. For $x, y \in L^p$ let us put
\[D_{sp}(x,y) = \sup_{-\infty < u < \infty} \left\{ \int_{u}^{u+1} |x(s) - y(s)|^p ds \right\}^{1/p} \]

If for \(x \in L^p \) and for \(\varepsilon > 0 \) there is \(D_{sp}(x \tau , x) \leq \varepsilon \), then the number \(\tau \) is called \(S^p, \varepsilon \)-almost period of \(x \). The function \(x \in L^p \) is called Stepanov's almost periodic function \((S^p - a.p.)\) iff for each \(\varepsilon > 0 \) the set \(E_{s,p}(\varepsilon, x) \) of \(S^p, \varepsilon \)-almost periods of \(x \) relatively dense. If \(p = 1 \) we have an \(S \)-a.p. function. For example the continuous function
\[
x(u) = \sin \frac{1}{2 + \cos u + \cos(\sqrt{2}u)}
\]
for \(u \in (-\infty, \infty) \) is \(S \)-a.p. and \(x \) not \(B \)-a.p. (See[1]).

Let \(X_0 \) be the set of functions defined on the whole real axis taking finite real values. Let us denote for an arbitrary \(t \in (-\infty, \infty) \) the Jordan variation of the function \(x \in X_0 \) on the interval \(<t - 1, t + 1> \) by \(V(x; t) \).

For \(x \in X_0 \) let us write
\[
V(x) = \sup_{-\infty < t < \infty} \{ |x(t) + V(x; t)| \}.
\]

We say that \(x \in X_0 \) satisfies the condition \((W)\) iff for every \(\alpha \in (-\infty, \infty) \) and for every \(l > 0 \) there exists \(M > 0 \) such that for every \(t \in (\alpha, \alpha + l) \) we have \(V(x; t) \leq M \). Let us put
\[\tilde{X}_0 = \{ x \in X_0 : x \text{ is continuous and satisfies the condition } (W) \}. \]
The function \(x \in \tilde{X}_0 \) is called almost periodic in variation \((V \text{-a.p.)}\) iff for \(\varepsilon > 0 \) the set \(E_v(\varepsilon, x) \) of \(V \)-almost periods of \(x \), i.e. the set of numbers \(\tau \) for which \(V(x \tau - x) \leq \varepsilon \), is relatively dense. Every \(V \)-a.p. function is a Bohr's a.p. function. For example the Bohr's a.p. function \(x \) of the form (1) is \(V \)-a.p. Let us write \(x(u) = x_1(u) + x_2(u) \) for \(u \in (-\infty, \infty) \), where
\[
x_1(u) = \begin{cases} 0 & \text{for } u = k \\ (u - k) \sin \frac{\pi}{u - k} & \text{for } u \in (k, k + 1) \end{cases}, \quad k = 0, \pm 1, \pm 2, \ldots
\]
\(x_2(u) = \sin(\sqrt{2}u) \quad \text{for} \ u \in (-\infty, \infty). \)

Then \(x \) is a Bohr's a.p. function and \(x \) is not \(V \)-a.p. (See[2]).

In [3] it was shown that if the indefinite integral of an \(S \)-a.p. function bounded and uniformly continuous, then this integral is \(V \)-a.p. The following theorem is true:

Theorem 1. If \(x \) is an \(S \)-a.p. function and the indefinite integral of \(x \)

\[
F(u) = \int_{u_o}^{u} x(s)ds + C \quad \text{for} \ u \in (-\infty, \infty)
\]

is bounded, then \(F \) is \(V \)-a.p.

Proof. Let \(x \) be \(S \)-a.p. and \(S_x(\cdot;h) \) be the Steklov function of \(x \) of the form

\[
S_x(u;h) = \frac{1}{2h} \int_{u-h}^{u+h} x(s)ds,
\]

where \(h > 0, \ u \in (-\infty, \infty). \ S_x(\cdot;h) \) is \(B \)-a.p. Let us denote

\[
F_x(w;h) = \int_{w_o}^{w} S_x(u;h)du + C \quad \text{for} \ h > 0,
\]

where \(w \in (-\infty, \infty). \)

For \(w \in (-\infty, \infty) \) we have

\[
|F_x(w;h) - F(w)| \leq \frac{1}{2h} \int_{-h}^{h} \{ | \int_{w}^{w+s} x(u)du| + | \int_{w_o}^{w+s} x(u)du| \} dx.
\]

Let us choose an \(S, \varepsilon/2 \)-almost period \(\tau \) of \(x \) such that

\(\tau \in (-w, -w + l) \), where \(l = l(\varepsilon) > 0 \) is the number which characterizes the relative density of the set \(E_{s,1} \{ \varepsilon/2; x \} \). For \(0 \leq s \leq 1 \) we obtain

\[
\int_{w}^{w+s} |x(u + \tau)|du \leq \int_{0}^{l+1} |x(u)|du < \infty,
\]
because x is S^1-bounded. Hence there exists $\Delta = \Delta(\varepsilon) > 0$ such that for $0 \leq s < \Delta$ we have

$$\int_{w}^{w+s} |x(u+\tau)|du < \frac{\varepsilon}{2}$$

and

$$\left| \int_{w}^{w+s} x(u)du \right| < \int_{w}^{w+s} |x(u+\tau) - x(u)|du + \frac{\varepsilon}{2} \leq \varepsilon.$$

Therefore we obtain the following estimation

$$\left| \int_{w}^{w+s} x(u)du \right| < \varepsilon \quad \text{for } |s| < \Delta$$

uniformly with respect to $w \in (-\infty, \infty)$, and so the sequence $(F_x(w; h_n))$, where $h_n \to 0$, is convergent to $F(w)$ uniformly with respect to $w \in (-\infty, \infty)$. The Steklov function $S_x(\cdot; h)$ of x satisfies the following inequality

$$|S_x(u; h) - S_x(u; h)| \leq \frac{1}{2h} \int_{u-h}^{u+h} |x(s+\tau) - x(s)|ds \quad \text{for every } u \in (-\infty, \infty).$$

Hence $S_x(\cdot; h)$ is B-a.p. Because for every $h > 0$ and every $w \in (-\infty, \infty)$

$$F_x(w; h) = \frac{1}{2h} \int_{-h}^{h} [F(w+s) - F(w_0 + s)]ds + C$$

and F is bounded, $F_x(\cdot; h)$ is also bounded on $(-\infty, \infty)$. Therefore $F_x(\cdot; h)$ is B-a.p. The limit F of the sequence $(F_x(\cdot; h_n))$, where $h_n \to 0$, which is uniformly convergent, is B-a.p.

Because x is S^1-bounded, for every $t \in (-\infty, \infty)$ we have

$$V(F; t) \leq \int_{t-1}^{t+1} |x(s)|ds \leq M,$$

where M is a constant, and so we see that $F \in \tilde{X}_0$. For an arbitrary $\varepsilon > 0$ there exists $N = N(\varepsilon) > 0$ such that for $n_0 > N$ we have
uniformly with respect to $w \in (-\infty, \infty)$. It is known (see [1], p.29) that there exists $\varepsilon' = \varepsilon'(\varepsilon) > 0$ such that $\varepsilon' < \varepsilon/15$ and every ε' - almost period of $S_x(\cdot; h_{n_0})$ is an $\varepsilon/3$-almost period of $F_x(\cdot; h_{n_0})$. Hence for $\tau \in E_{\delta_1} \{2h_{n_0}, \varepsilon', \varepsilon\}$, where $h_{n_0} \leq 1$, we obtain

$$V(F_\tau - F) \leq \sup_{-\infty < t < \infty} |F(t + \tau) - F_x(t + \tau; h_{n_0})| +$$

$$+ \sup_{-\infty < t < \infty} |F_x(t + \tau; h_{n_0}) - F_x(t; h_{n_0})| + \sup_{-\infty < t < \infty} |F_x(t; h_{n_0}) - F_x(t)| +$$

$$+ \sup_{-\infty < t < \infty} V(F_\tau - F; t) \leq \frac{7}{15} \varepsilon + \sup_{-\infty < t < \infty} \int_{t-1}^{t+1} |x(s + \tau) - x(s)| ds \leq \varepsilon,$$

and so F is V-a.p.

Theorem 2. Let us assume that x an S-a.p. function.

a) If the indefinite integral of x

$$F(u) = \int_{u_0}^{u} x(s) ds + C \quad \text{for} \quad u \in (-\infty, \infty)$$

satisfies the following condition

$$\sup_{-\infty < t < \infty} \left| \int_{t}^{t+1} F(u) du \right| < \infty,$$

then the function G of the form

$$G(w) = \int_{w}^{w+1} F(u) du + C \quad \text{for} \quad w \in (-\infty, \infty)$$

is B-a.p.

b) If the indefinite integral of x is S^{1}-bounded, then G is V-a.p.

Proof. a) Let x be S-a.p. and let $S_x(\cdot; h)$ be the Steklov function of x of the form (2). Let us write for $w \in (-\infty, \infty)$
\[F_x(w; h) = \int_{w_0}^{w} S_x(u, h) du + C. \]

Similarly as in the proof of Theorem 1 we obtain that the sequence \((F_x(w; h_n))\), where \(h_n \to 0\), is convergent to \(F(w)\) uniformly with respect to \(w \in (-\infty, \infty)\).

Because \(x\) is \(S\)-a.p., for every fixed \(s \in (-\infty, \infty)\) and every fixed \(t \in (-\infty, \infty)\) the function \(y_{st}\) of the form

\[y_{st}(u) = \int_{s+t+u}^{s+t+u+1} x(w) dw \]

is \(B\)-a.p. By the assumption it follows that there exists a constant \(M > 0\) such that for every \(t \in (-\infty, \infty)\) we have

\[\left| \int_{t}^{t+1} F(r) dr \right| \leq M. \]

Hence for every \(r \in (-\infty, \infty)\) we obtain

\[\left| G_{st}(r) \right| = \left| \int_{r_0}^{r} y_{st}(u) du + C \right| \leq 2M + |C|, \]

and so \(G_{st}\) \(B\)-a.p. It is known (see [1], p.29) that for an arbitrary \(\varepsilon > 0\) there exists \(0 < \varepsilon' = \varepsilon'(\varepsilon) < \varepsilon\) such that every \(\varepsilon'\) - almost period of \(y_{st}\) is an \(\varepsilon\) - almost period of \(G_{st}\). Hence for \(\tau \in E_{S^1}\{\varepsilon', x\}\) we have \(\tau \in E\{\varepsilon; G_{st}\}\) and

\[\left| \int_{0}^{\tau} y_{st}(u) du \right| \leq \varepsilon \]

for every \(s\) and every \(t\). Therefore for every \(t \in (-\infty, \infty)\) and for \(\tau \in E_{S^1}\{\varepsilon', x\}\) we obtain

\[\left| \int_{t+\tau}^{t+1} F_x(w; h) dw - \int_{t}^{t+1} F_x(w; h) dw \right| \leq \frac{1}{2h} \int_{-h}^{h} \int_{0}^{\tau} y_{st}(u) du \, ds \leq \varepsilon, \]
i.e. $E_{S^1}^{t+1}\{\varepsilon'; x\} \subset E\{\varepsilon; z_h\}$, where

$$z_h(t) = \int_{t}^{t+1} F_x(w; h)dw,$$

and hence z_h is B-a.p. The sequence $(z_{h_n}(t))$ is convergent to $G(t)$ for every $h_n \to 0$ uniformly with respect to $t \in (-\infty, \infty)$, and so G is B-a.p.

b) Because F is S^1-bounded, for every $t \in (-\infty, \infty)$ we have

$$V(G; t) \leq \int_{t-1}^{t+1} |F(u)|du + \int_{t}^{t+2} |F(u)|du \leq M,$$

where M is a constant, and so $G \in \tilde{X}_o$.

For an arbitrary $\varepsilon > 0$ there exists $N = N(\varepsilon) > 0$ such that for $n_o > N$ we obtain

$$|z_{h_{n_0}}(t) - G(t)| \leq \frac{\varepsilon}{9},$$

uniformly with respect to $t \in (-\infty, \infty)$, where $z_{h_{n_0}}$ is of the form (3). It is known that there exists $0 < \varepsilon' = \varepsilon'(\varepsilon) < \varepsilon/9$ such that $E_{S^1}^{t+1}\{\varepsilon'; x\} \subset E\{\varepsilon/3; z_{h_{n_0}}\}$. Hence for every $t \in (-\infty, \infty)$ and every $\tau \in E_{S^1}^{t+1}\{\varepsilon'; x\}$ we have

$$|G(t + \tau) - G(t)| \leq \frac{5}{9} \varepsilon$$

and

$$V(G_t - G) \leq \sup_{-\infty < t < \infty} |G(t + \tau) - G(t)| + 4 \sup_{-\infty < t < \infty} \int_{t}^{t+1} |x(s + \tau) - x(s)|ds < \varepsilon,$$

i.e. G is V-a.p.
References

(Adam Mickiewicz University, Faculty of Mathematics and Computer Science, Poznań)
Received on 30.8.1994 and, in revised form, on 28.12.1994.