ON THE RATE OF POINTWISE CONVERGENCE OF THE KANTOROVICH-TYPE OPERATORS

ABSTRACT: For bounded or some locally bounded functions \(f \) measurable on an interval \(I \) there is estimated the rate of convergence of the Kantorovich-type operators \(L_n f \) at those points \(x \in \text{Int} I \) at which the one-sided limits \(f(x \pm 0) \) exist. In the main theorems the Chanturiya modulus of variation is used.

KEY WORDS: Kantorovich-type operator, rate of convergence, modulus of variation.

1. PRELIMINARIES

Let \(I \) be a finite or infinite interval and let \(M(I) \) be the class of all measurable complex-valued functions bounded on \(I \). In the case when \(I \) is an infinite interval, denote by \(M_{\text{loc}}(I) \) the class of all functions measurable on \(I \) and bounded on every compact subinterval of \(I \). Given any \(n \in \mathbb{N} := \{1,2,\ldots\} \), let \(J_n \) be a set of indices contained in \(Z := \{0, \pm 1, \pm 2, \ldots\} \) and let \(I \) be the union of non-overlapping intervals \(I_{j,n} \), \((j \in J_n) \), with increasing left [right] end points. Introduce, formally, for functions \(f \) belonging to \(M(I) \) or \(M_{\text{loc}}(I) \), the discrete operators \(L_n \) defined by

\[
L_n f(x) := \sum_{j \in J_n} f(\xi_{j,n}) p_{j,n}(x) \quad (x \in I, \ n \in \mathbb{N}),
\]

where \(\xi_{j,n} \in I_{j,n} \) and \(p_{j,n} \) are non-negative functions continuous on \(I \). Denote by \(L_n^* \) the Kantorovich-type modification of operators (1), given by

\[
L_n^* f(x) := \sum_{j \in J_n} (m_{j,n})^{-1} p_{j,n}(x) \int_{I_{j,n}} f(t) \, dt \quad (x \in I, \ n \in \mathbb{N}),
\]

with \(m_{j,n} = \text{meas } I_{j,n} \). Assume that, for every \(x \in I \),

\[
\rho_n(x) := \sum_{j \in J_n} p_{j,n}(x) - 1 \to 0 \quad \text{as } n \to \infty,
\]

and that

\[
\mu_{2,n}^*(x) := \sum_{j \in J_n} (m_{j,n})^{-1} p_{j,n}(x) \int_{I_{j,n}} (t - x)^2 \, dt < \infty \quad (n \in \mathbb{N}).
\]
In view of the Shisha and Mond Theorem ([4], pp. 28-29) we have

$$\lim_{n \to \infty} L_n^* f(x) = f(x)$$

at every point x of continuity of $f \in M(I)$ at which $\mu^*_n(x) \to 0$ as $n \to \infty$. Some approximation properties of certain concrete operators of the form (2) for continuous or Lebesgue-integrable functions f are investigated e.g. in [5, Chap.9], [9, Chap. II].

In this paper we present general quantitative inequalities for the rate of pointwise convergence of $L_n^* f(x)$ for functions $f \in M(I)$ (or $f \in M_{loc}(I)$) at those points $x \in \text{Int } I$ at which the one-sided limits $f(x \pm 0)$ exist. In particular, inequalities of this type for the Bernstein-Kantorovich polynomials are obtained in [10]. Analogous results for operators (1) are given in [1].

For the sake of brevity we write

$$s(x) := \frac{1}{2} \{f(x+0) + f(x-0)\}, \quad r(x) := \frac{1}{2} \{f(x+0) - f(x-0)\}.$$

Our main estimates concerning the deviation $|L_n^* f(x) - s(x)|$ are expressed in terms of the modulus of variation of the function

$$g_x(t) := \begin{cases} f(t) - f(x+0) & \text{if } t > x, \\ 0 & \text{if } t = x, \\ f(t) - f(x-0) & \text{if } t < x, \end{cases} \quad (t \in I).$$

Given any positive integer k, the modulus of variation $v_k(g;Y)$ of a bounded function g on a finite or infinite interval Y is defined as the upper bound of the set of all numbers

$$\sum_{j=1}^{k} |g(b_j) - g(a_j)|$$

over all systems Π_k of k non-overlapping intervals (a_j, b_j) contained in Y. If $k = 0$ we take $v_0(g;Y) = 0$. Clearly, $v_k(g;Y)$ is a non-decreasing function of k. Some basic properties of this modulus can be found e.g. in [3].

In our considerations we use the standing notation:

$$I_x(h) := [x+h, x] \cap I \quad \text{if } h < 0, \quad I_x(h) := [x, x+h] \cap I \quad \text{if } h > 0,$$

$$J_x(h) := [x-h, x+h] \cap I \quad \text{for } h > 0.$$

The integral part of a real number u is denoted by $[u]$.
2. MAIN RESULTS

Let us note that under the assumption $f \in M(I)$ the operators (2) can be written in the form

\[L_n^* f(x) = \int f(t) H_n(x,t) dt \]

with

\[H_n(x,t) = \sum_{j \in J_n} (m_{j,n})^{-1} p_{j,n}(x) \chi_{j,n}(t), \]

where $\chi_{j,n}$ denotes the characteristic function of the interval $I_{j,n}$. The same is also true for $f \in M_{loc}(I)$, satisfying the suitable growth condition (as in Theorem 2 below).

Consider a point $x \in \text{Int} I$ at which both limits $f(x \pm 0)$ exist. It is clear that

\[L_n^* f(x) - s(x) = L_n^* g_x(x) + r(x) L_n^* \text{sgn}_x(x) + s(x) \rho_n(x), \]

where

\[\text{sgn}_x(t) := \begin{cases} 1 & \text{if } t > x, \\ 0 & \text{if } t = x, \\ -1 & \text{if } t < x. \end{cases} \]

In order to evaluate the term $L_n^* g_x(x)$ it is convenient to use the representation (5) and write

\[L_n^* g_x(x) = \left(\int_{I_x(-a)} + \int_{I_x(b)} \right) g_x(t) H_n(x,t) dt + g_x(a,b) \int_{D_x(a,b)} g_x(t) H_n(x,t) dt \]

where $a > 0$, $b > 0$, $D_x(a,b) = I[x-a,x+b]$, $g_x(a,b) = 0$ if neither of the points $x-a$, $x+b$ belongs to Int I, and $g_x(a,b) = 1$ otherwise.

Lemma. Suppose that $x \in \text{Int} I$ and that f is bounded on an interval $I_x(h)$, $h \neq 0$. Choose a positive null sequence $(d_n)_n$ such that $d_n \leq 1/2$ and write $\mu := [1/d_n]$. Then, for every $n \in N$,

\[\left| \int_{I_x(b)} g_x(t) H_n(x,t) dt \right| \leq \]
\[\leq P_n(x, h) \left\{ \sum_{i=1}^{\mu-1} \frac{1}{i^2} v_i(g_x; I_x(i h d_n)) + \frac{1}{\mu^2} v_{1} (g_x; I_x(h)) \right\}, \]

where \(P_n(x, h) := 1 + \rho_n(x) + 8 \mu_{2,n}(x) h^{-2} d_n^{-2} \).

This result follows by the same method as in [1] or [2], and we omit the details.

If the function \(f \) is bounded on \(I \) and if at least one of the points \(x - a, x + b \) belongs to \(\text{Int} \ I \), then the obvious inequality

\[
\int_{|t-x| \leq s} H_n(x, t) \, dt \leq \frac{1}{s^2} \mu_{2,n}^*(x), \quad (x \in I, \ s > 0)
\]

yields the estimate

\[
(9) \quad \left| \int_{D_x(a, b)} g_x(t) H_n(x, t) \, dt \right| \leq \frac{1}{c^2} \mu_{2,n}^*(x) v_1(g_x; I),
\]

where \(\mu_{2,n}^*(x) \) is defined by (4) and \(c = \min \{a, b\} \).

Taking into account identities (6), (7) with \(a = b = 1 \), inequality (9) and the Lemma (with \(h = -1 \) and \(h = 1 \)), we can state our main result as follows.

Theorem 1. Suppose that, for all \(x \in I \) and all \(n \in N \),

\[
(10) \quad \sum_{j \in J_n} P_{j,n} (x) \equiv 1 + \rho_n (x) \leq \varphi_1 (x),
\]

\[
(11) \quad \mu_{2,n}^*(x) \leq \varphi_2 (x) d_n^2,
\]

where \(\varphi_1, \varphi_2 \) are some positive functions continuous on \(I \) and \((d_n)_{1}^{\infty} \) is a positive null sequence. If \(f \in M(I) \) and if at a point \(x \in \text{Int} \ I \) the one-sided limits \(f(x \pm 0) \) exist then, for all positive integers \(n \) such that \(d_n \leq 1/2 \),

\[
|L_n^* f(x) - s(x)| \leq P(x) \left\{ \sum_{i=1}^{\mu-1} \frac{1}{i^2} v_i(g_x; J_x(id_n)) + \frac{1}{\mu^2} v_{1} (g_x; J_x(1)) \right\} + \\
+ \partial_x (1, 1) \varphi_2 (x) d_n^2 v_1(g_x; I) + \left| r(x) L_n^* \text{sgn}_x (x) \right| + |s(x) \rho_n (x)|,
\]

where \(\mu = [1/d_n] \), \(P(x) := 2 \varphi_1 (x) + 8 \varphi_2 (x) \) and \(\rho_n (x) \) is defined by (3).
Following [1, Theorem 2] (or [2, Theorem 2]) one can get the result for unbounded functions f on infinite interval I.

Theorem 2. Let $I = [0, \infty)$ or $I = (-\infty, \infty)$ and let conditions (10), (11) be fulfilled. Suppose that a function f of class $M_{loc}(I)$ satisfies the growth condition

$$|f(x)| \leq \psi(x) \quad (x \in I)$$

with a positive continuous function ψ such that for all $n \geq n_0 \in N, \ x \in I$

$$\sum_{j \in J_n} (m_{j,n})^{-1} p_{j,n}(x) \int_{I_{j,n}} \psi^2(t) \, dt \leq \varphi_3(x),$$

$0 < \varphi_3(x) < \infty$. If at a point $x \in \text{Int} I$ the limits $f(x \pm 0)$ exist and if A is an arbitrary positive number for which $|x| \leq A$ then, for every integer $n \geq n_0$, such that $d_n \leq 1/2$, we have

$$|L_{n}^* f(x) - s(x)| \leq$$

$$\leq 2P(x,A)\left\{\sum_{i=1}^{\mu-1} \frac{1}{i!^2} v_i\left(g_x;J_x(A_d_n)\right) + \frac{1}{\mu^2} v_{\mu}\left(g_x;J_x(A)\right)\right\} +$$

$$+ \Lambda(x,A)d_n + |r(x)L_{n}^* \text{sgn}_x(x)| + |s(x)\rho_n(x)|,$$

where

$$P(x,A) := \varphi_1(x) + 8\varphi_2(x)/A^2,$$

$$\Lambda(x,A) := A^{-1}(\varphi_2(x)\varphi_3(x))^{1/2} + \frac{1}{4} A^{-2} \psi(x)\varphi_2(x)$$

and the remaining quantities are of the same meaning as in Theorem 1.

Now, let us denote by $BV_p(I)$ $(1 \leq p < \infty)$ the class of all functions of bounded p-th power variation on I. Here, by p-th power variation of a function g on the interval $Y \subseteq I$ we will mean the upper bound of the set of non-negative numbers

$$\left\{\sum_j |g(b_j) - g(a_j)|^p\right\}^{1/p}$$

over all finite systems of non-overlapping intervals $(a_j, b_j) \subseteq Y$. We will denote it by $V_p(g;Y)$. Clearly, if $V_p(g;Y) < \infty$ then for every positive integer j,
\[v_j(g;Y) \leq j^{1-1/p} V_p(g;Y). \]

Using this inequality and proceeding similarly to [11, pp.152-153] we get from Theorem 1 the following

Corollary. Suppose that conditions (10), (11) are satisfied. If \(f \in BV_p(I) \) then, for all \(x \in \text{Int} I \) and \(n \in \mathbb{N} \) such that \(0 < d_n \leq 1/2 \),

\[
|L_n^* f(x) - s(x)| \leq Q(x) \frac{1}{\mu^{1+1/p}} \sum_{k=0}^{\mu^2-1} \frac{1}{(\sqrt{k+1})^{1-1/p}} V_p(g_x;Y_k) + \\
+ |r(x)L_n^* \text{sgn}_x(x)| + |s(x)\rho_n(x)|,
\]

where \(Y_k = J_{x}(1/\sqrt{k}) \) if \(k = 1,2,\ldots,\mu^2-1 \), \(Y_0 = I \), \(Q(x) := 15(\varphi_1(x) + 8\varphi_2(x)) \), \(\mu, L_n^* \text{sgn}_x(x), \rho_n(x) \) have the same meaning as in Theorem 1.

In the case of unbounded functions \(f \) Theorem 2 leads to the analogous Corollary, too.

Remark 1. The term \(L_n^* \text{sgn}_x(x) \) occurring in our estimates can be written in the form

\[L_n^* \text{sgn}_x(x) = \sum_{j \in J_n} (m_{j,n})^{-1} p_{j,n}(x) \left(\int_{t>x} \chi_{j,n}(t)dt - \int_{t<x} \chi_{j,n}(t)dt \right). \]

Suppose that \(x \) belongs to the interval \(I_{i,n} = [\alpha_{i,n}, \beta_{i,n}] \). Then

\[L_n^* \text{sgn}_x(x) = \sum_{j \in J_n} (m_{j,n})^{-1} p_{j,n}(x) \left\{ \beta_{i,n} \int_x^{\beta_{i,n}} \chi_{j,n}(t)dt + \sum_{k \geq 1} \int_{I_{k,n}} \chi_{j,n}(t)dt \right\} + \\
- \sum_{j \in J_n} (m_{j,n})^{-1} p_{j,n}(x) \left\{ \sum_{k \leq 1} \int_{I_{k,n}} \chi_{j,n}(t)dt + \int_{a_{i,n}}^{\chi} \chi_{j,n}(t)dt \right\}. \]

(It is understood that the summation in the inner sums is extended over \(k \in J_n \).) Further,
\[L_n^* \text{sgn}_x(x) = (m_{i,n})^{-1} p_{i,n}(x)(\beta_{i,n} - x) - (m_{j,n})^{-1} p_{j,n}(x)(x - \alpha_{i,n}) + \]
\[+ \sum_{j<l} (m_{j,n})^{-1} p_{j,n}(x)m_{j,n} - \sum_{j<l} (m_{j,n})^{-1} p_{j,n}(x)m_{j,n} = \]
\[= (m_{i,n})^{-1} p_{i,n}(x)(\beta_{i,n} - 2x + \alpha_{i,n}) + \sum_{j<l} p_{j,n}(x) - \sum_{j<l} p_{j,n}(x). \]

Consequently,
\[|L_n^* \text{sgn}_x(x)| \leq p_{i,n}(x) + \left| \sum_{j<l} p_{j,n}(x) - \sum_{j<l} p_{j,n}(x) \right|. \]

The above estimate is useful in applications.

Remark 2. In view of the continuity of the function \(g_x \) at \(x \), the right-hand side of inequality (8) converges to zero as \(n \to \infty \) (see e.g. Remark 1 in [11]). Moreover, for many operators of the form (2), condition (3) is satisfied and
\[\lim_{n \to \infty} L_n^* \text{sgn}_x(x) = 0 \text{ at every } x \in \text{Int } I. \]

Consequently, for these operators, the right-hand sides of the inequalities given in Theorems 1, 2 and Corollary converge to zero as \(n \) tends to infinity.

3. EXAMPLES

Let \(\{\xi_k\}_{i=1}^\infty \) be a sequence of independent and identically distributed random variables with expectations \(E\xi_k = x \) and finite variances \(E(\xi_k - E\xi_k)^2 = \sigma^2(x) \), where \(x \) is a real parameter taking values in an interval \(I \subseteq [0, \infty) \). Suppose that \(\xi_1 \) has the lattice distribution \(F := \{p_{j,n}(x) : x \in I, j \in J_1\} \) concentrated on a set \(J_1 \subseteq N_0 := \{0,1,2,\ldots\} \). The operators (1) with the system \(\{p_{j,n}(x) : x \in I, j \in J_1\} \) being the \(n \)-fold convolution of \(F \) with itself and \(\xi_{j,n} = j/n \) are called the discrete Feller operators ([6], p. 218). Consider the corresponding Kantorovich-type operators \(L_n^* \) defined by (2) in which \(\xi_{j,n} \in J_{i,n} \) and \(m_{j,n} \leq 1/n \) for all \(j \in J_{i,n}, n \in N \). Suppose that \(x \in I_{i,n} \) with some index \(l \in J_{i,n} \) and put \(\lambda = (l - nx)/\sqrt{n\sigma(x)} \). Then
\[\left| \sum_{j<l} p_{j,n}(x) - \frac{1}{2} \right| \leq \left| \sum_{j<l} p_{j,n}(x) - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\lambda \exp(-u^2/2)du \right| + \]
\[
\frac{1}{\sqrt{2\pi}} \left| \int_0^1 \exp(-u^2/2) \, du \right|.
\]

If, moreover,
\[
\sigma^2(x) > 0 \quad \text{and} \quad \beta(x) := E(|\zeta_1 - x|^3) < \infty
\]
then, in view of the Berry-Esséen Theorem ([6], p. 515),
\[
\left| \sum_{j \leq l} p_j(x) - \frac{1}{2} \right| \leq \frac{\tau \beta(x)}{\sqrt{n} \sigma^3(x)} + \frac{1}{\sqrt{2\pi n} \sigma(x)}
\]
and
\[
p_{l,n}(x) \leq \frac{2 \tau \beta(x)}{\sqrt{n} \sigma^3(x)} + \frac{1}{\sqrt{2\pi n} \sigma(x)},
\]
where \((2\pi)^{-1/2} < \tau < 0.82\) (see e.g. [2], p. 101). Applying (14) we get
\[
|L_n^* \operatorname{sgn}_x(x)| \leq 2 \left(\left(\frac{1}{2} - \sum_{j \leq l} p_j(x) \right) + p_{l,n}(x) \right) \leq \frac{2}{\sqrt{n}} \left(\frac{3 \tau \beta(x)}{\sigma^3(x)} + \frac{2}{\sqrt{2\pi} \sigma(x)} \right).
\]

Now, we present an application of our Theorems to some concrete Feller-Kantorovich operators.

1. The Bernstein-Kantorovich polynomials \(B_n^* = L_n^*\) are defined by (2) with
\[
p_j(x) = \binom{n}{j} x^j (1-x)^{n-j}, \quad I_{j,n} = \frac{j}{n+1} \frac{j+1}{n+1}, \quad x \in I = [0,1], \quad j \in J_n = \{0,1,\ldots,n\}
\]
and \(m_{j,n} = 1/(n+1)\). In this case, \(\sigma^2(x) = x(1-x), \quad \beta(x) = x(1-x) \cdot (2x^2 - 2x + 1)\) ([8], p. 98). Moreover,
\[
\mu_{2,n}(x) = \frac{3x(1-x)(n-1)+1}{3(n+1)^2} \quad \text{for all} \quad x \in I, \quad n \in N;
\]
whence \(\mu_{2,n}(x) \leq 1/4n\) for all \(n \in N\) and \(\mu_{2,n}(x) \leq 3x(1-x)/n\) for \(n \geq (x(1-x))^{-1}\). Consequently, Theorem 1 and Corollary apply for \(x \in (0,1)\) and all \(n \geq 2\), with \(d_n = 1/\sqrt{n}, \quad \varphi_1(x) = 1, \quad \varphi_2(x) = 1/4, \quad \varphi_3(x), \varphi_4(x) = 0, \quad \rho_n(x) = 0\) and, in view of (15),
\[
|B_n^* \operatorname{sgn}_x(x)| \leq 10(2x^2 - 2x + 1)/\sqrt{nx(1-x)}.
\]
For \(n \geq (x(1-x))^{-1}\) it is convenient to choose \(\varphi_2(x) = 3x(1-x)\).
2. Let $S_n^* = I_n^*$ be the modified Szasz-Mirakyan operators defined by (2) with $p_{j,n}(x) = (nx)^je^{-nx}/j!, \ I_{j,n} = \left[\frac{j}{n}, \frac{j+1}{n} \right], \ x \in I = [0, \infty), \ j \in J_n = N_0$ and $m_{j,n} = 1/n$. In this case, $\sigma^2(x) = x$, $\beta(x) \leq 8x^3 + 6x^2 + x$ ([8], p. 99), $\mu_{2,n}^*(x) = x/n + 1/3n^2$ for all $x \in I, \ n \in N$. Consequently, Theorem 1 and Corollary apply for $x > 0$ and all $n \geq 2$ with $d_n = 1/\sqrt{n}$, $\varphi_1(x) = 1$, $\varphi_2(x) = (6x + 1)/12$, $\vartheta_2(1,1) = 1$, $\rho_n(x) = 0$, and

$$|S_n^* \text{sgn}_x(x)| \leq 10(4x^2 + 3x + 1)/\sqrt{n}x,$$

by (15).

3. The Baskakov-Kantorovich operators $U_n^* = I_n^*$ are defined by (2) in which $p_{j,n}(x) = \binom{n+j-1}{j} x^j (1+x)^{-n-j}, \ I_{j,n} = \left[\frac{j}{n}, \frac{j+1}{n} \right], \ x \in I = [0, \infty)$, $j \in J_n = N_0$, $m_{j,n} = 1/n$. Now $\sigma^2(x) = x(1+x)$, $\beta(x) \leq 16x^3 + 9x^2 + x$ ([8], p. 100). It is easy to see that

$$\mu_{2,n}^*(x) = \frac{x(x+1)}{n} + \frac{1}{3n^2} \quad \text{for all} \quad x \in I, \ n \in N.$$

Hence, our results can be applied for $x > 0$ and all $n \geq 2$, with $d_n = 1/\sqrt{n}$, $\varphi_1(x) = 1$, $\varphi_2(x) = (1/3)(3x(x+1)+1)$, $\vartheta_2(1,1) = 1$, $\rho_n(x) = 0$. In this case inequality (15) implies

$$|U_n^* \text{sgn}_x(x)| \leq 10(8x^2 + 5x + 1)/\sqrt{nx(x+1)^3}.$$

Finally, let us consider the generalized Favard operators $F_n^* = I_n^*$, which are not the Feller-type ones. They are defined by formula (1) in which $\xi_{j,n} = j/n$, $j \in J_n = Z$, $x \in I = (-\infty, \infty)$ and

$$p_{j,n}(x) = p_{j,n}(\gamma, x) = (\sqrt{2\pi n \gamma_n})^{-1} \exp \left(-\frac{1}{2} \gamma_n^{-2} \frac{j-x}{n} \right),$$

where $\gamma = (\gamma_n)_{n=1}^\infty$ is a positive null sequence such that

$$n^2 \gamma_n^2 \geq \frac{1}{2} \pi^{-2} \log n \quad \text{for} \quad n \geq 2, \quad \gamma_1^2 \geq \frac{1}{2} \pi^{-2} \log 2.$$
(see [7]). Denote by F_n^* their Kantorovich modification of the form (2) with
$I_{j,n} = [j/n, (j+1)/n]$, and $m_{j,n} = 1/n$ for all $j \in \mathbb{Z}$ and $n \in \mathbb{N}$. As is known
([7]), for all $x \in I$ and $n \in \mathbb{N}$
\[|\rho_n(x)| \leq 2 \quad \text{or} \quad |\rho_n(x)| \leq 7\pi \gamma_n \]
and
\[\mu_{2,n}(x) := \sum_{j=-\infty}^{\infty} \left(\frac{j}{n} - x \right)^2 p_{j,n}(x) \leq 51 \gamma_n^2. \]
An easy computation shows that
\[\mu_{2,n}^*(x) \leq \mu_{2,n}(x) + \frac{1}{n} \sqrt{\mu_{2,n}(x)} \sqrt{1 + \rho_n(x)} + \frac{1}{3n^2} (1 + \rho_n(x)) \leq 158 \gamma_n^2. \]
Hence, applying Theorem 1 (or Corollary) to these operators, we can put
$\varphi_1(x) = 3$, $\varphi_2(x) = 158 \kappa^2$ and $d_n = \gamma_n / \kappa$, where $\kappa := \max \{1, 2^{\sup} \gamma_j \}$. In order

Hence, applying Theorem 1 (or Corollary) to these operators, we can put
\[\varphi_1(x) = 3, \quad \varphi_2(x) = 158 \kappa^2 \quad \text{and} \quad d_n = \gamma_n / \kappa, \quad \text{where} \quad \kappa := \max \{1, 2^{\sup} \gamma_j \}. \]
In order to estimate the term $F_n^* \text{sgn}_x (x)$ we use inequality (14) and, arguing similarly to

In order to estimate the term $F_n^* \text{sgn}_x (x)$ we use inequality (14) and, arguing similarly to [1, Sect. 4.1], we obtain
\[|F_n^* \text{sgn}_x (x)| \leq 3(\sqrt{2\pi n} \gamma_n)^{-1} \leq 3\sqrt{\pi (\log n)}^{-1/2} \quad \text{for} \quad n \geq 2. \]
The same estimates can also be used in Theorem 2. Additionally, let us note that

The same estimates can also be used in Theorem 2. Additionally, let us note that

if unbounded function f satisfies (12) with $\psi(x) = \exp(q x^2)$, $q > 0$, then

if unbounded function f satisfies (12) with $\psi(x) = \exp(q x^2)$, $q > 0$, then

condition (13) is fulfilled for $q \gamma_n^2 \leq 3/128$ with $\varphi_1(x) = c(q) \exp(4q x^2)$, $c(q)$

condition (13) is fulfilled for $q \gamma_n^2 \leq 3/128$ with $\varphi_1(x) = c(q) \exp(4q x^2)$, $c(q)$

being some positive constant depending on q.

Acknowledgement. I am thankful to Professor Paulina Pych-Taberska for
her valuable suggestions.

REFERENCES

(Adam Mickiewicz University, Faculty of Mathematics and Computer Science, Poznań, Poland)

Received on 10.07.1997 and, in revised form, on 10.12.1997.