BRANCHES IN RECURSIVE TREES

Abstract. In the paper various properties of subtrees of a random recursive tree are studied. In particular we derive the probability distribution of the size of a branch, the first two moments of the number of leaves and the number of root free paths.

Keywords. recursive tree, branch of a tree, subtree, path, root free path.

1. Introduction

A tree is a connected graph which has no cycles (see [1] for definitions not given here). A tree R with n vertices labeled $1, 2, \ldots, n$ is a recursive tree if for each k such that $2 \leq k \leq n$, labels of vertices in the unique path from the first vertex to the k-th vertex form an increasing subsequence of $\{1, 2, \ldots, n\}$. Such a tree can be also defined as a result of successively joining of the i-th vertex to one of the first $i-1$ vertices. Figure 1 shows all recursive trees with four vertices.

![Recursive trees with four vertices](image)

Figure 1. Recursive trees with four vertices

A vertex with label 1 is a root of a recursive tree. A leaf of a tree is a vertex of degree one (we assume that the root of a tree is not a leaf even if it has degree one). Leaves are also called endvertices or external vertices while the vertices that are not leaves are called internal or inner vertices. A branch (or a subtree) rooted at point j of a recursive tree R is a recursive tree which consist of all
vertices of the tree R such that the path from the root to the vertices of the branch contains vertex j.

A random recursive tree with n vertices is a tree picked at random from the family \mathcal{R}_n of all $(n-1)!$ recursive trees with n vertices. We assume that all $(n-1)!$ possible choices of a tree are equiprobable (see e.g. [5] for not-equiprobable models of a random recursive tree).

Our main object here is to find some properties of subtrees of a random recursive tree.

For a tree R with n vertices let $\alpha_i(R)$ denote a tree obtained from the tree R by adding new vertex labeled $n+1$ and joining it with vertex i. Of course $\alpha_i(R) \in \mathcal{R}_{n+1}$.

For a random variable X let $E[X]$, $E_k[X]$ and $\text{Var}[X]$ denote the expected value, k-th factorial moment and the variance of X, respectively.

2. THE SIZE OF A BRANCH

Let $G_{ni} = G_{ni}(R)$ denote the number of vertices in the i-th subtree of a random recursive tree R with n vertices.

Theorem 1. For $1 \leq i \leq n$

$$E[G_{ni}] = \frac{n}{i}$$

and

$$\text{Var}[G_{ni}] = \frac{n(n-i)(i-1)}{i^2(i+1)}. $$

Moreover, for $1 \leq k \leq n-i+1$

$$\text{Prob}(G_{ni} = k) = \binom{n-i}{k-1} \frac{\left(\frac{1}{i}\right)^{[k-1]} \left(1 - \frac{1}{i}\right)^{[n-i-k+1]}}{(n-i)!},$$

where $(n)^{[k]} = n(n+1)\cdots(n+k-1)$ is a factorial power.

Proof: Let us consider the process of adding new vertices to the recursive tree with respect to the number of vertices in the i-th branch. It is a particular case of a general Pólya urn scheme. We outline the scheme here, for more complete description see for example [3].
In the Pólya scheme a single urn initially contains \(w \) white balls and \(b \) black balls. A ball is drawn at random and then replaced, together with \(s \) balls of the same color. The procedure is repeated \(n \) times. Let \(X \) be the random variable representing the number of times a black ball is drawn. Then \(X \) has a Pólya-Eggenberger distribution, that is

\[
\text{Prob}(X = k) = \binom{n}{k} \frac{\alpha^k \beta^{n-k}}{(\alpha + \beta)^n},
\]

where \(\alpha = \frac{b}{s} \), \(\beta = \frac{w}{s} \) and \(x^n = x(x+1)(x+2)\cdots(x+k-1) \) is a factorial power. Moreover the expectation and the variance of the random variable \(X \) are equal to

\[
E[X] = \frac{n\alpha}{\alpha + \beta}
\]

and

\[
\text{Var}[X] = \frac{n\alpha}{\alpha + \beta} \left(\frac{(n-1)(\alpha + 1)}{\alpha + \beta + 1} + 1 - \frac{n\alpha}{\alpha + \beta} \right).
\]

Returning to recursive trees, initially we have \(i \) balls, \(i-1 \) white (not in the \(i \)-th subtree) and one black (belonging to the branch). After each drawing, the chosen ball is returned together with one additional ball of the same color (i.e. \(s = 1 \)). After \(n-i \) drawings we have \(n \) balls in the urn and the number of black balls is equivalent to the size of \(i \)-th branch. Now, the random variable \(G_{ni} \) has a Pólya-Eggenberger distribution and the Theorem 1 is an immediate consequence of a general Pólya urn model theory.

Let us notice that for \(i = 1 \) the whole tree is a branch, and the result is obvious. Similarly, for \(i = n \) the size of the subtree is one.

3. THE NUMBER OF LEAVES IN A SUBTREE

Let \(L_{ni} = L_{ni}(R) \) denote the number of endvertices in the \(i \)-th branch of a random recursive tree \(R \) with \(n \) vertices. It is known (see [2] or [4]) that \(E[L_{n,1}] = n/2 \). Here we derive the expected value and second factorial moment of \(L_{ni} \) in a general case.

Theorem 2. For \(1 \leq i \leq n \)

\[
E[L_{ni}] = \frac{(n+i-1)(n-i)}{2i(n-1)}
\]
and

\[E_2[L_n] = \frac{n(n+1)}{2i(i+1)} - \frac{2n}{3i} + \frac{(i-1)(i-2)}{6(n-1)(n-2)}. \]

Proof. From the way a recursive tree with \(n+1 \) vertices is obtained from a tree with \(n \) vertices we get

\[E[L_{n+1,i}] = \frac{1}{n!} \sum_{R \in \mathcal{R}_n} \sum_{j=1}^{n} L_{n+1,i}(\alpha_j(R)). \]

Fix a tree \(R \) with \(n \) vertices. Adding \((n+1)\)-st vertex to this tree one can obtain \(n \) recursive trees with \(n+1 \) vertices \(\alpha_1(R), \alpha_2(R), \ldots, \alpha_n(R) \). Then the number of leaves in the \(i \)-th vertices can be increased by one (if we join \((n+1)\)-st vertex to an inner vertex of a subtree) or be the same. So,

\[\sum_{j=1}^{n} L_{n+1,i}(\alpha_j(R)) = (G_{ni}(R) - L_{ni}(R))(L_{ni}(R) + 1) + (n - G_{ni}(R) + L_{ni}(R)L_{ni}(R) \]

\[= G_{ni}(R) + (n-1)L_{ni}(R). \]

Therefore, using (1) and Theorem 1 we get

\[E[L_{n+1,i}] = \frac{1}{n} E[G_{ni}] + \frac{n-1}{n} E[L_{ni}] \]

and

\[E[L_{n+1,i}] = \frac{n-1}{n} E[L_{ni}] + \frac{1}{i}. \]

Solving this linear recurrence equation with initial condition \(E[L_{ii}] = 0 \) one can get the required formula for \(E[L_{ni}] \).

Similarly

\[E_2[L_{n+1,i}] = \frac{1}{n!} \sum_{R \in \mathcal{R}_n} \sum_{j=1}^{n} (L_{n+1,i}(\alpha_j(R)))_2, \]

but
\[
\sum_{j=1}^{n} (L_{n+1,i}(\alpha_j(R)))^2 \\
= (G_{ni}(R) - L_{ni}(R))(L_{ni}(R) + 1)^2 + (n - G_{ni}(R) + L_{ni}(R))(L_{ni}(R))^2 \\
= n(L_{ni}(R))^2 + 2L_{ni}(R)G_{ni}(R) - 2(L_{ni}(R))^2 \\
= (n - 2)(L_{ni}(R))^2 + 2L_{ni}(R)G_{ni}(R) - 2L_{ni}(R)
\]
because \((x + 1)^2 = (x)^2 + 2x\) and \(x^2 = (x)^2 + x\). Putting it into formula (2) we get
\[
E_2[L_{n+1,i}] = \frac{n-2}{n} E_2[L_{ni}] + \frac{2}{n} E[L_{ni}G_{ni}] - \frac{2}{n} E[L_{ni}]
\]
and finally
\[
(3) \quad E_2[L_{n+1,i}] = \frac{n-2}{n} E_2[L_{ni}] + \frac{2}{n} E[L_{ni}G_{ni}] - \frac{2}{n}.
\]
Now we will find \(E[L_{ni}G_{ni}]\). For simplicity let us denote \(\eta(n) = E[L_{ni}G_{ni}]\). It is easy to see, that due to the way of construction of a recursive tree one can get
\[
\eta(n+1) = \frac{1}{n!} \sum_{R \in \mathcal{R}_n} \sum_{j=1}^{n} L_{n+1,i}(\alpha_j(R)) G_{n+1,i}(\alpha_j(R)),
\]
and by similar arguments we find
\[
\sum_{j=1}^{n} L_{n+1,i}(\alpha_j(R)) G_{n+1,i}(\alpha_j(R)) \\
= (n - G_{ni}(R))(L_{ni}(R) + 1)(G_{ni}(R) + 1) \\
+ (G_{ni}(R) - L_{ni}(R))(L_{ni}(R) + 1)(G_{ni}(R) + 1) \\
= nL_{ni}(R)G_{ni}(R) + G_{ni}(R) + G_{ni}(R) - L_{ni}(R).
\]
So, we have
\[
\eta(n+1) = \eta(n) + \frac{1}{n} E[G_{ni}^2] + \frac{1}{n} E[G_{ni}] - \frac{1}{n} E[L_{ni}] \\
= \eta(n) + 2 \frac{n+1}{i(i+1)} - \frac{1}{2i} + \frac{i-1}{2n(n-1)}
\]
with boundary condition \(\eta(1) = 0\). Solving this recurrence relation we obtain
\[
\eta(n) = \sum_{j=1}^{n-1} \left(2 \frac{j+1}{i(i+1)} - \frac{1}{2i} + \frac{i-1}{2j(j-1)} \right).
\]
and further, after elementary calculations

\[\eta(n) = \frac{n(n+1)}{i(i+1)} - \frac{n}{2i} - \frac{1}{2} + \frac{n-i}{2(n-1)}. \]

Putting this to the recurrence relation (3) we find that

\[E_2[L_{n+1}] = \frac{n-2}{n} E_2[L_n] + f_n, \]

where \(f_n = \frac{2(n+1)}{i(i+1)} - \frac{2}{i}. \) Let us denote \(g_n = (n-1)(n-2)E_2[L_n]. \) Then (5) can be rewritten in the form

\[g_{n+1} = g_n + n(n-1)f_n, \]

with initial condition \(g_{1+1} = 0. \) Solving this recurrence we get

\[g_n = \frac{2}{i(i+1)} \sum_{j=i+1}^{n-1} (j) \frac{2}{i} \sum_{j=i+1}^{n-1} (j) \]

and the required formula for \(E_2[L_n] \) follows.

Let us mention that due to the Theorem 1 the expected size of the \(i \)-th subtree is \(\frac{n}{i} \), and for a recursive tree one half of its vertices are leaves, so one can expect that the number of leaves in the \(i \)-th branch approximates \(\frac{n}{2i} \) in average. As a matter of fact, we have the following result.

Corollary 2.1. If \(n \to \infty \) and \(i \) is fixed then

\[E[L_n] \sim \frac{n}{2i} \]

and

\[\text{Var}[L_n] \sim \begin{cases} \frac{1}{2i} n, & \text{if } i = 1, \\ \frac{12}{i-1} n^2, & \text{if } i > 1. \\ \frac{4i^2}{i+1} n^2, & \text{if } i > 1. \end{cases} \]

Corollary 2.2. If \(n \to \infty \) and \(i \to \infty \) but \(i = o(n) \) then
\[E[L_{ni}] \sim \frac{n}{2i} \]

and

\[\text{Var}[L_{ni}] \sim \frac{n^2}{4i^2}. \]

\textbf{Corollary 2.3.} If \(n \to \infty \) and \(i = \alpha n \) (where \(\alpha \) is a constant such that \(0 < \alpha < 1 \)) then

\[E[L_{ni}] \sim \frac{(1 + \alpha)(1 - \alpha)}{2\alpha} \]

and

\[\text{Var}[L_{ni}] \sim \frac{(1 - \alpha)(\alpha^3 + 7\alpha^2 + \alpha + 3)}{12\alpha^2}. \]

3. Root Free Paths

A path of a recursive tree which does not contain the vertex with label one is called a \textit{root free path}. Let us denote for a random recursive tree with \(n \) vertices:

- \(F_{E,E}(n) \) the number of root free paths such that both their ends are endvertices,
- \(F_{I,I}(n) \) the number of root free paths such that both their ends are not endvertices,
- \(F_{I,E}(n) \) the number of root free paths such this an endvertex and the other is not,
- \(F_T(n) \) the total number of root free paths.

Of course \(F_T(n) = F_{E,E}(n) + F_{I,I}(n) + F_{I,E}(n) \).

Notice, that the total number of paths in a tree is equal to the number of pairs of vertices (i.e. \(\binom{n}{2} \)).

\textbf{Theorem 3.} If \(n \to \infty \) then

\[E[F_{E,E}(n)] \sim \frac{n^2}{16}. \]
\[E[F_{i,j}(n)] \sim \frac{n^2}{16}, \]
\[E[F_{i,E}(n)] \sim \frac{n^2}{8}, \]

and
\[E[F_r(n)] \sim \frac{n^2}{16}. \]

Proof. We only prove the first relation, proofs of the others are similar.

Let \(S_1 = S_1(R) \) denote the set of vertices incident to the root of a recursive tree \(R \). A subtree rooted at a vertex from \(S_1 \) is called \textit{main branch}.

Notice, that a path of a tree is root free if and only if both its ends are in the same main branch. So,
\[E[F_{E,E}(n)] = \frac{1}{2(n-1)!} \sum_{R \in \mathcal{R}_n} \sum_{i \in S(R)} L_n(R) (L_n(R) - 1). \]

Let \(\xi_i(R) \) be defined as follow:
\[\xi_i(R) = \begin{cases} 0, & \text{if } i \notin S_1, \\ 1, & \text{if } i \in S_1. \end{cases} \]

Using this notation we get
\[E[F_{E,E}(n)] = \frac{1}{2(n-1)!} \sum_{R \in \mathcal{R}_n} \sum_{i=2}^{n-2} \xi_i(R) L_n(R) (L_n(R) - 1) \]
\[= \frac{1}{2} \sum_{i=2}^{n-2} E[\xi_i L_n(L_n - 1)]. \]

Let us fix \(i \). From the definition of the expected value we have
\[E[\xi_i L_n(L_n - 1)] = \sum_j j \text{ Prob}(\xi_i L_n(L_n - 1) = j) \]
\[= \sum_j j \text{ Prob}(L_n(L_n - 1) = j \mid i \in S_1) \text{ Prob}(i \in S_1). \]

Clearly \(\text{Prob}(i \in S_1) = \frac{1}{i - 1} \) and one can see that random events \(i \in S_1 \) and \(L_n(L_n - 1) = j \) are independent. Therefore
\[
E[\xi_i L_{n_i} (L_{n_i} - 1)] = \frac{1}{i-1} E_2[L_{n_i}].
\]

Using (6) we get
\[
E[F_{E,E}(n)] = \frac{1}{2} \sum_{i=2}^{n-2} \frac{E_2[L_{n_i}]}{i-1},
\]
and due to the Theorem 2 we obtain
\[
E[F_{E,E}(n)]
= \frac{n(n+1)}{4} \sum_{i=2}^{n-2} \frac{1}{(i+1)i(i-1)} - \frac{n}{3} \sum_{i=2}^{n-2} \frac{1}{i(i-1)} + \frac{1}{6(n-1)(n-2)} \sum_{i=2}^{n-2} (i-2)
= \frac{(n-3)(3n^3 - 13n^2 + 20n - 16)}{48(n-1)(n-2)}.
\]

This implies that \(E[F_{E,E}(n)] \sim \frac{n^2}{16} \). \[\]

Notice, that asymptotically one half of all the paths of a recursive tree are root free paths.

REFERENCES

(*Department of Discrete Mathematics, Adam Mickiewicz University, 60–769 Poznań, Poland, E-mail address: jszymans@amu.edu.pl*)

Received on 05.12.1997 and, in revised form, on 17.09.1998.

Research supported by grant KBN 2 P03A 023 09