MARIAN LISKOWSKI

INTERPOLATION INEQUALITIES
IN ORLICZ-SOBOLEV SPACE

ABSTRACT: We consider the problem of determining upper bounds for norms of functions from Orlicz-Sobolev space $W^{1,M} (\Omega)$, $j = 0, 1, 2, ..., m$ in terms of norms of the space $W^{m,M} (\Omega)$ and Orlicz space $L^M (\Omega)$.

The interpolation inequalities of this type are well-known for classical Sobolev spaces $W^{m,p} (\Omega)$, $p \geq 1$, (see e.g. [6], [7] and also [1]).

KEY WORDS: Orlicz-Sobolev space, Orlicz space, modular, modular space.

Let \mathcal{R} be a real vector space. A functional $\rho : \mathcal{R} \to [0, +\infty]$, where $\mathcal{R} = [0, +\infty]$, is called a convex pseudomodular in \mathcal{R}, if $\rho(0) = 0$, $\rho(-x) = \rho(x)$ and $\rho(\alpha x + \beta y) \leq \alpha \rho(x) + \beta \rho(y)$ for $x, y \in \mathcal{R}$, $\alpha, \beta \geq 0$, $\alpha + \beta = 1$. If, additionally, $\rho(x) = 0$ only for $x = 0$, then ρ is called a convex modular on \mathcal{R}, (see [5]).

By a function $M : [0, +\infty) \to [0, +\infty)$ we mean a map which is convex, vanishing and continuous at zero and not vanishing everywhere. A function M satisfies the condition A_2 if there exists a constant $K > 0$ such that $M(2u) \leq K M(u)$ for every $u > 0$ (for more details see e.g. [5]).

Let Ω be a nonempty open set in the N-dimensional real Euclidean space \mathbb{R}^N. By X we shall denote the vector space of all locally integrable functions on Ω with equality almost everywhere on Ω. Let m be a fixed non-negative integer number. The convex modular J on X we define in the following manner

$$J(f) = \sum_{|\alpha| \leq m} \int_{\Omega} |\partial^\alpha f(x)| dx \quad \text{for} \quad f \in X,$$

where $D^\alpha f$ is the distributional derivative of f. By the Orlicz-Sobolev space $W^{m,M} (\Omega)$ we mean the set of all functions $f \in X$, possessing distributional derivatives $D^\alpha f$ up to order m, for which there exists a constant $a > 0$, depending of f, such that $J(\alpha f) < \infty$. The space $W^{m,M} (\Omega)$ equipped with the Luxemburg norm $\| \cdot \|_{W^{m,M}}$ generated by the modular J, is a Banach space, (see [2]). In the sequel we shall use $\| \cdot \|_{m}$ in place $\| \cdot \|_{W^{m,M}}$. Let $W^{m,M}_0 (\Omega)$ denote the closure of $C_0^\infty (\Omega)$ in the space $W^{m,M} (\Omega)$.
In the Orlicz-Sobolev space $W^{m,M}(\Omega)$ we define the family functionals $(I_j)_{0 \leq j \leq m}$ as follows

$$I_j(f) = \sum_{|\alpha| = j} \int_{\Omega} M(|D^\alpha f(x)|)dx \quad \text{for} \quad f \in X.$$

For $j = 0$ the above functional is a convex modular and for $1 \leq j \leq m$ the functionals I_j are convex pseudomodulars. Moreover we define the second family of functionals $(J_j)_{0 \leq j \leq m}$ by

$$J_j(f) = \sum_{|\alpha| = j} \int_{\Omega} M(|D^\alpha f(x)|)dx \quad \text{for} \quad f \in X.$$

The functionals J_j are convex modulars. In particular, for $j = m$, we obtain the modular J generating $W^{m,M}(\Omega)$.

The following theorem is proved in [4]:

Theorem 1. Let ρ be a convex pseudomodular in a real vector space \mathfrak{X} and let $\rho(cu) < \infty$ for some $c > 0$. If $\rho(a(u_n - u)) \to 0$ as $n \to \infty$ for every $a > 0$, then there exists $b > 0$ such that $\rho(bu_n) \to \rho(bu)$ as $n \to \infty$.

Let the mapping $f \to f^*$, for $f \in X$, denote zero extension of f outside a set Ω:

$$f^*(x) = \begin{cases} f(x) & \text{if} \quad x \in \Omega, \\ 0 & \text{if} \quad x \in \mathbb{R}^N - \Omega. \end{cases}$$

(1)

Lemma 1. Let $f \in W_0^{m,M}(\Omega)$. The mapping $f \to f^*$ specified by (1) is an isometric isomorphism of $W_0^{m,M}(\Omega)$ into $W^{m,M}(\mathbb{R}^N)$.

Proof. Let $f \in W_0^{m,M}(\Omega)$ and let $(\phi_n)_{n=1}^\infty \subset C_0^\infty(\Omega)$ be a sequence converging to f in the space $W_0^{m,M}(\Omega)$. For any $\varphi \in C_0^\infty(\mathbb{R}^N)$ we have for $|\alpha| \leq m$

$$\left| \int_{\Omega} f(x)D^\alpha \varphi(x)dx - \int_{\Omega} \phi_n f(x)D^\alpha \varphi(x)dx \right| \leq c \| f - \phi_n \|_{W^{m,M}(\Omega)}.$$

Since

$$\int_{\mathbb{R}^N} f^*(x)D^\alpha \varphi(x)dx = \lim_{n \to \infty} \int_{\Omega} \phi_n(x)D^\alpha \varphi(x)dx = \int_{\Omega} f(x)D^\alpha \varphi(x)dx,$$
\[= (-1)^{|\alpha|} \lim_{n \to \infty} \int_{\Omega} D^\alpha \phi_n(x) \varphi(x) dx = (-1)^{|\alpha|} \int_{\Omega} D^\alpha f(x) \varphi(x) dx =
\]
\[= (-1)^{|\alpha|} \int_{R^N} (D^\alpha f)^*(x) \varphi(x) dx,
\]
so \(D^\alpha f^* = (D^\alpha f)^* \) in the distributional sense on \(R^N \). Then we have
\[\int_{\Omega} M(|D^\alpha f(x)|) dx = \int_{R^N} M(|(D^\alpha f)^*(x)|) dx = \int_{R^N} M(|D^\alpha f^*(x)|) dx
\]
for \(|\alpha| \leq m\). Hence \(\|f\|_{W^{m,M}(\Omega)} = \|f^*\|_{W^{m,M}(R^N)} \).

This lemma, for the case \(M(u) = u^p, \ 1 \leq p < \infty \) can be found in [1].

Lemma 2. Let \(M \) satisfy the condition \(\Delta_2 \). Let \(-\infty \leq a < b \leq \infty \), and let \(0 < \varepsilon_0 < \infty \). There exists a constant \(C = C(\varepsilon_0, M, b-a) \) for \(0 < b-a < \infty \), such that for every function \(f \in C^2(a,b) \) and for every \(0 < \varepsilon \leq \varepsilon_0 \)
\[\int_a^b M(|f'(t)|) dt \leq C \int_a^b M(\varepsilon(f''(t))) dt + C \int_a^b M(\varepsilon^{-1}|f(t)|) dt.
\]
If \(b-a = \infty \), then (2) holds with a constant \(C = C(M) \) for every \(\varepsilon > 0 \).

Proof. We assume, that \(\varepsilon_0 = 1 \) and \(0 < b-a < \infty \). If \(\xi \in (a, a + (1/3)(b-a)) \) and \(\eta \in (a + (2/3)(b-a), b) \), then there exists \(\lambda \in (\xi, \eta) \) such that
\[|f'(\lambda)| = \left| \frac{f(\eta) - f(\xi)}{\eta - \xi} \right| \leq \frac{3}{b-a} (|f(\eta)| + |f(\xi)|).
\]
It follows, by convexity of \(M \), that for any \(x \in (a, b) \)
\[M(|f'(x)|) \leq \frac{1}{3} M\left(\frac{9}{b-a} |f(\xi)| \right) + \frac{1}{3} M\left(\frac{9}{b-a} |f(\xi)| \right) + \frac{1}{3} M\left(3 \int_a^b |f''(t)| dt \right).
\]
Applying Jensen’s inequality and integrating the above inequality with respect to \(\xi \) over \(\xi \in (a, a + (1/3)(b-a)) \) and with respect to \(\eta \) over \(\eta \in (a + (2/3)(b-a), b) \), we obtain
\[M(|f'(x)|) \leq \frac{1}{b-a} \int_a^b M\left(\frac{9}{b-a} |f(t)| \right) + \frac{1}{b-a} \int_a^b M(3(b-a) |f''(t)|) dt.
\]
Integrating with respect to \(x \) over \((a,b) \), we are led to
(3) \[\int_a^b M(|f''(t)|) dt \leq \int_a^b M\left(\frac{9}{b-a} |f(t)| \right) dt + \int_a^b M(3(b-a)|f''(t)|) dt. \]

Since \(0 < \varepsilon \leq 1 \) there exists a positive integer \(n \) such that \((1/2)\varepsilon \leq (1/n) \leq \varepsilon \). Setting \(a_j = a + (b-a)(j/n) \) for \(j = 0, 1, ..., n \), we obtain from (3), noting that \(a_{j+1} - a_j = (b-a)/n \),

\[\int_a^b M(|f''(t)|) dt \leq \sum_{j=0}^{n-1} \left\{ \int_{a_j}^{a_{j+1}} M\left(\frac{18}{b-a} \varepsilon^{-1} |f(t)| \right) dt + \int_{a_j}^{a_{j+1}} M(3(b-a)\varepsilon |f''(t)|) dt \right\}. \]

Let \(p \) be a positive integer number such that

\[\max\left\{ \frac{18}{b-a}, 3(b-a) \right\} \leq 2^p. \]

Then, applying the condition \(\Delta_2 \), we have

(4) \[\int_a^b M(|f''(t)|) dt \leq K^p \int_a^b M(\varepsilon^{-1} |f(t)|) dt + K^p \int_a^b M(\varepsilon |f''(t)|) dt. \]

Let now \(\varepsilon_0 \) be an arbitrary positive number. For \(0 < \varepsilon \leq \varepsilon_0 \) we have \(0 < (\varepsilon/\varepsilon_0) \leq 1 \). Thus, from (4), we obtain

\[\int_a^b M(|f''(t)|) dt \leq C \int_a^b M\left(\frac{\varepsilon_0}{\varepsilon} |f(t)| \right) dt + C \int_a^b M\left(\frac{\varepsilon}{\varepsilon_0} |f''(t)| \right) dt. \]

Suppose, that \(b-a = \infty \). To be specific we assume \(a < \infty \) and \(b = \infty \). For given \(\varepsilon > 0 \) let \(a_j = a + j\varepsilon \), \(j = 0, 1, 2, ... \). Using (3) we have

\[\int_a^\infty M(|f''(t)|) dt = \sum_{j=0}^{\infty} \int_{a_j}^{a_{j+1}} M(|f''(t)|) dt \leq \int_a^\infty M(9\varepsilon^{-1} |f(t)|) dt + \int_a^\infty M(3\varepsilon |f''(t)|) dt. \]

By the condition \(\Delta_2 \)

\[\int_a^\infty M(|f''(t)|) dt \leq C \int_a^\infty M(\varepsilon^{-1} |f(t)|) dt + C \int_a^\infty M(\varepsilon |f''(t)|) dt, \]

which is the desired inequality, where the constant \(C \) depends only on \(M \).
The other possibilities are similar.

Lemma 3. Let M satisfy the condition Δ_2. Let $0 < \delta_0 < \infty$, let $m \geq 2$ and let $\varepsilon_0 = \min\{\delta_0, \delta_0^2, ..., \delta_0^{m-1}\}$. Suppose that there exists a constant $K = K(\delta_0, M, \Omega)$ such that for every δ, $0 < \delta \leq \delta_0$ and for every $u \in W^{2,M}(\Omega)$ we have

$$I_1(u) \leq K I_2(\delta u) + K I_0(\delta^{-1} u).$$

Then there exists a constant $C = C(\varepsilon_0, m, M, \Omega)$ such that for every $0 < \varepsilon \leq \varepsilon_0$, every integer j, $0 \leq j \leq m-1$, and every $u \in W^{m,M}(\Omega)$, we have

$$I_j(u) \leq C I_m(\varepsilon u) + K I_0\left(\varepsilon^{m-j} u\right).$$

Proof. For $j = 0$ the inequality (6) is obvious. We consider only the case $1 \leq j \leq m-1$. We first prove (6) for $j = m-1$ by induction on m. Then for $m = 2$ the inequality (6) is exactly (5). Assume, that (6) holds for some k, $2 \leq k \leq m-1$,

$$I_{k-1}(u) \leq K_1 I_k(\delta u) + K_1 I_0(\delta^{-(k-1)} u)$$

for every $0 < \delta \leq \delta_0$ and $u \in W^{k,M}(\Omega)$. Let $u \in W^{k+1,M}(\Omega)$ and let $|\alpha| = k-1$. Then for $u \in W^{k+1,M}(\Omega)$ we have $D^\alpha u \in W^{2,M}(\Omega)$. Thus, from (5) we obtain

$$I_1(D^\alpha u) \leq K_2 I_2(\delta D^\alpha u) + K_2 I_0(\delta^{-1} D^\alpha u).$$

Then, by (7), we have for $0 < \eta \leq \delta_0$

$$I_k(u) \leq \sum_{|\alpha|=k-1} I_1(D^\alpha u) \leq K_3 I_{k+1}(\delta u) + K_3 I_{k-1}(\delta^{-1} u) \leq K_3 I_{k+1}(\delta u) + K_1 K_3 I_k(\delta^{-1} \eta u) + K_1 K_3 I_0(\delta^{-1} \eta^{1-k} u).$$

We may assume without loss of generality, that $2 K_1 K_3 \geq 1$. Taking $\eta = \delta/2 K_1 K_3$ and applying Δ_2, we obtain

$$I_k(u) \leq K_4 I_{k+1}(\delta u) + K_4 I_0(\delta^{-k} u).$$

This completes the induction establishing (6) for $j = m-1$ with $\varepsilon = \delta$.
By induction on \(j \) we prove

\[
I_j(u) \leq K_3 I_m(\delta^{m-j} u) + K_3 I_0(\delta^{-j} u)
\]

for \(1 \leq j \leq m-1 \) and \(0 < \delta \leq \delta_0 \). Setting \(k = m \) in (7) we obtain (9) in the special case \(j = m-1 \). Thus for \(j = m-1 \) (9) holds. Assume, therefore, that (9) holds for some \(j \), \(2 \leq j \leq m-1 \). We prove that it also holds for \(j-1 \). From (7) and (8) we obtain

\[
I_{j-1}(u) \leq K_6 I_m(\delta^{m-(j-1)} u) + K_6 I_0(\delta^{1-j} u).
\]

Thus (9) holds. Let \(0 < \varepsilon \leq \min\{\delta_0, \delta_0^2, \ldots, \delta_0^{m-1}\} \) be arbitrary. Then \(\varepsilon \leq \delta_0^{m-j} \) for every \(j = 1, 2, \ldots, m-1 \). Hence \(\varepsilon^{\frac{1}{(m-j)}} \leq \delta_0 \). Now (6) follows by setting \(\delta = \varepsilon^{\frac{1}{(m-j)}} \) in (9).

Theorem 2. Let \(M \) satisfy the condition \(\Delta_2 \). There exists a constant \(K = K(m, M, N) \) such that for any \(\varepsilon > 0 \), any integer \(j \), \(0 \leq j \leq m-1 \), and any \(u \in W_0^{m, M}(\Omega) \)

\[
I_j(u) \leq K I_m(\varepsilon u) + K I_0\left(\frac{\varepsilon}{\varepsilon - j} u\right).
\]

Proof. The operator \(Tu = u^* \), \(u \in W_0^{m, M}(\Omega) \), specified by (1) is, by Lemma 1, an isometric isomorphism of \(W_0^{m, M}(\Omega) \) into \(W_0^{m, M}(R^N) \). Thus it is sufficient to prove the theorem for \(\Omega = R^N \). By Lemma 3 we need consider only the case \(j = 1, m = 2 \). For \(j = 0, m = 1 \) the desired thesis is obvious.

Let \(\varepsilon > 0 \) be arbitrary and let \(\phi \in C_0^\infty(R^N) \). By Lemma 2 we have

\[
\int_{R^N} M(||D_j \phi(x)||) dx_j \leq K \int_{R^N} M(\varepsilon ||D_j^2 \phi(x)||) dx_j + K \int_{R^N} M(\varepsilon^{-1} ||\phi(x)||) dx_j.
\]

Integrating the above inequality with respect to the remaining components of \(x \), we obtain

\[
\int_{R^N} M(||D_j \phi(x)||) dx \leq K \int_{R^N} M(\varepsilon ||D_j^2 \phi(x)||) dx + K \int_{R^N} M(\varepsilon^{-1} ||\phi(x)||) dx.
\]

Hence

\[
I_1(\phi) = \sum_{j=1}^N \int_{R^N} M(||D_j \phi(x)||) dx \leq K \sum_{|\alpha| = 2} \int_{R^N} M(\varepsilon ||D^\alpha \phi(x)||) dx +
\]
\[+ KN \int_{\mathbb{R}^N} M(\varepsilon^{-1}|\phi(x)|) dx \leq K_1 I_1(\varepsilon\phi) + K_1 I_0(\varepsilon^{-1}\phi). \]

Let \(u \in W_{0}^{m,M}(\Omega) \). Since \(C_0^\infty(\mathbb{R}^N) \) is dense in \(W^{m,M}(\mathbb{R}^N) \), (see [3]), it follows that there exists a sequence \((\phi_n) \in C_0^\infty(\mathbb{R}^N)\) such that \(J(a(u - \phi_n)) \to 0 \) as \(n \to \infty \) for every \(a > 0 \). Hence \(I_i(a(u - \phi_n)) \to 0 \) as \(n \to \infty \) for every \(a > 0 \) and \(i = 0, 1, 2 \). By Theorem 1 and the condition \(\Delta_2 \) we have

\[I_0(\varepsilon^{-1}\phi_n) \leq I_0(\varepsilon^{-1}u), \quad I_1(\phi_n) \to I_1(u) \text{ and } I_2(\varepsilon\phi_n) \leq I_2(\varepsilon u) \text{ as } n \to \infty. \]

Using (10) we have

(12) \[I_1(\phi_n) \leq K_1 I_2(\varepsilon\phi_n) + K_1 I_0(\varepsilon^{-1}\phi_n) \quad \text{for} \quad n = 1, 2, \ldots. \]

Let \(n \to \infty \) in (12). Then, we obtain

\[I_1(u) \leq K_1 I_2(\varepsilon u) + K_1 I_0(\varepsilon^{-1}u). \]

This completes the proof.

Theorem 3 Let \(\Omega \) be arbitrary open set in \(\mathbb{R}^N \) and let \(M \) satisfy the condition \(\Delta_2 \). Then there exists a constant \(K = K(m, M, N) \) such that for \(0 \leq j \leq m \) and any \(u \in W_{0}^{m,M}(\Omega) \)

\[\|u\|_j \leq K \|u\|_{m}^{j/m} \|u\|_0^{(m-j)/m}. \]

Proof. For \(j = 0 \) and \(j = m \) the desired inequality is obvious. Let \(0 < j < m \). By means of Theorem 2 for \(0 < \varepsilon \leq 1 \) we have

(13) \[J_j(u) = \sum_{i=0}^{j} I_i(u) \leq \sum_{i=0}^{j} \left\{ K I_m(\varepsilon u) + K I_0\left(\varepsilon^{-\frac{i}{m-i}}u\right) \right\} \leq K_1 J_m(\varepsilon u) + K_1 J_0\left(\varepsilon^{-\frac{i}{m-i}}u\right) \]

for any \(u \in W_{0}^{m,M}(\Omega) \). It follows by continuity of \(M \) that

\[J_m\left(\frac{u}{\|u\|_{m}}\right) \leq 1 \quad \text{and} \quad J_0\left(\frac{u}{\|u\|_0}\right) \leq 1 \]
for any \(u \in W_0^{m,M}(\Omega), u \neq 0 \). Now we set \(\varepsilon = (\|u\|_0/\|u\|_m)^{(m-j)/m} \) and denote \(B = \|u\|_m^{j/m} \|u\|_0^{(m-j)/m} \). Then, by (13), we obtain for fixed \(j \), \(J_j(u/B) \leq 2K_1 \). We may assume that \(2K_1 \geq 1 \). Then, by convexity of \(J_j \) we have

\[
\|u\|_j \leq 2K_1 \|u\|_m^{j/m} \|u\|_0^{(m-j)/m}.
\]

REFERENCES

[3] H. Hudzik, Denisty of \(C_{00}^\infty (\mathbb{R}^N) \) in generalized Orlicz-Sobolev space \(W_0^k(\mathbb{R}^N) \), *Funct. et Approx.* 7(1979), 15-21.

(Poznan University of Technology, Institute of Mathematics, 60-965 Poznań, Poland)

Received on 04.12.1997 and, in revised form, on 12.05.1998.