SOME REMARKS ON ALMOST PERIODIC FUNCTIONS

ABSTRACT: In this paper we present the definition and some properties of (IC)-a.p. functions, i.e. uniformly almost periodic $(B$-a.p.) functions with their indefinite integrals. Next, we give the definition and some properties of $(IC)^{(n)}$-a.p. functions, i.e. uniformly almost periodic functions with their n derivatives and indefinite integrals, and $(IC)^{(n)}_{\omega}$-a.p. functions, i.e. uniformly almost periodic functions with their every derivatives, with respect to a positive sequence $a = (a_i)$, and indefinite integrals.

KEY WORDS: uniformly almost periodic function, derivative of order n, indefinite integral.

1. (IC) – ALMOST PERIODIC FUNCTIONS

1.1. Definitions

We first give basic notations related to uniformly almost periodic functions with their indefinite integrals.

By $C(R)$ we denote the set of functions from R into itself which are continuous. Denote for $f, g \in C(R)$

$$T(f_a, g_b)(u) = |F_a(u) - G_b(u)| \quad \text{for} \quad u \in R,$$

where $a, b \in R$, $f_a(x) \equiv f(x + a)$, $g_b(x) \equiv g(x + b)$, $F_a(x) \equiv F(x + a) = \int_0^{x+a} f(s) \, ds$, $G_b(x) \equiv G(x + b) = \int_0^{x+b} g(s) \, ds$, and in the follow we define the (ID) – distans, putting

$$(ID)(f, g) = \sup_{t \in R} (|f(t) - g(t)| + T(f, g)(t)).$$

We say that an $f \in C(R)$ is (IC) – bounded iff $(ID)(f) < \infty$, where $(ID)(f) = (ID)(f, 0)$. Let $f_h(x) \equiv f(x + h)$. We say that $f \in C(R)$ is an (IC)-continuous function iff $\lim_{h \to 0} (ID)(f, f_h) = 0$. A sequence (f_k) in $C(R)$ will be called (ID)-convergent to an $f \in C(R)$ iff $\lim_{k \to \infty} (ID)(f, f_k) = 0$.

THEOREM 1.1. If a sequence (f_k) of (IC)-continuous functions is (ID)-convergent to a function $f \in C(R)$, then an f is (IC)-continuous.
Proof. Since a sequence \((f_k)\) is \((ID)\)-convergent to an \(f \in C(R)\), it follows that for an arbitrary \(\varepsilon > 0\) there exists a \(k_0 > 0\) such that
\[
(ID)(f, f_{k_0}) \leq \frac{\varepsilon}{3}.
\]
By \((IC)\)-continuity of \(f_{k_0}\), there exists a \(\delta = \delta(\varepsilon, k_0) > 0\) such that
\[
(ID)((f_{k_0})_h, f_{k_0}) \leq \frac{\varepsilon}{3} \quad \text{for} \quad h \in R, \quad |h| < \delta,
\]
where \((f_{k_0})_h(x) = f_{k_0}(x + h)\). Hence for \(|h| < \delta\) we obtain
\[
(ID)(f, f_h) \leq (ID)(f, f_{k_0}) + (ID)(f_{k_0}, (f_{k_0})_h) + (ID)((f_{k_0})_h, f_h) \leq \varepsilon,
\]
because \(T((f_{k_0})_h, f_h) = |(F_{k_0})_h - F_h|\), and so \((ID)((f_{k_0})_h, f_h) = (ID)(f, f_{k_0})\).
Thus \(an \ f\) is \((IC)\)-continuous.

A set \(E \subset R\) is called *relatively dense* iff there exists a positive number \(l\) such that in every open interval \((\alpha, \alpha + l)\), \(\alpha \in R\), there is at least one element of the set \(E\). A number \(\tau \in R\) is called an \((ID), \varepsilon) – \text{almost period} (\((ID), \varepsilon) – \text{a.p.})\) of a function \(f \in C(R)\) iff \((ID)(f, f_\tau) \leq \varepsilon\), for \(\varepsilon > 0\). Let \((IE)\{\varepsilon; f\}\) denote the set of \((ID), \varepsilon) – \text{a.p.}\) periods of \(an \ f\).

A function \(f \in C(R)\) is called \((IC)\)-*almost periodic* ((IC)-a.p.) iff for each \(\varepsilon > 0\) the set \((IE)\{\varepsilon; f\}\) is relatively dense. By \((IC)\) we denote the set of (IC)-a.p. functions.

It is obvious that every (IC)-a.p. function is uniformly almost periodic (B-a.p.)

As regards the relation between \((IC)\)-boundedness and \((IC)\)-continuity, there holds the following:

Remark 1.2. For (IC)-a.p. functions classes of (IC)-bounded functions and of (IC)-continuous functions are identical. Generally, the class of (IC)-bounded functions and the class of (IC)-continuous functions are different. More, there exist functions belonging to one of these classes and not belonging to the other one (see Examples:1.16,1.17).

Denote
\[
F(u) = \int_0^u f(s) \, ds \quad \text{for} \quad u \in R.
\]
There are known the following:
Lemma 1.3. Let \(f \) be a B-a.p. function. Then for an arbitrary \(\varepsilon > 0 \) there exists an \(\varepsilon = \varepsilon(\varepsilon) > 0 \) such that \(\varepsilon < \varepsilon/3 \) and every \(\varepsilon \)-a.p. of an \(f \) is \((\varepsilon/3)\)-a.p. of the bounded indefinite integral \(F \) (see [5], p.29).

Lemma 1.4. For any B-a.p. functions \(f, g \) and for an arbitrary \(\varepsilon > 0 \) there exists a relatively dense set of their commonly \(\varepsilon \)-a.periods (see [5], p. 203 or [4], p. 432).

Remark 1.5. A function \(f \) is \((IC)\)-a.p. if and only if \(f \) and its indefinite integral \(F \) are uniformly a.p. functions.

Substantiation (Necessity) It is easily seen that if \(f \) is a \((IC)\)-a.p. function, then functions \(f \) and \(F \) are B-a.p.

Sufficiency Let \(\varepsilon > 0 \). Since \(f, F \) are B-a.p. functions, so using Lemma 1.4 we obtain that there exists the relatively dense set \(E\{\varepsilon/2; f, F\} \) of their commonly \(\varepsilon \)-a.periods. Thus for \(\tau \in E\{\varepsilon/2; f, F\} \) we have the estimation
\[
(ID)(f, f_\tau) \leq \varepsilon.
\]
We conclude, \(E\{\varepsilon/2; f, F\} \subset (IE)\{\varepsilon; f\}, \) so \(f \in (IC) \).

Moreover, using the Bohl-Bohr Theorem on the bounded indefinite integral of a uniformly a.p. function (see [5], we have:

Remark 1.6. A function \(f \) is \((IC)\)-a.p. if and only if an \(f \) is a B-a.p. function and its indefinite integral \(F \) is bounded.

Remark 1.7. The set of values of a B-a.p. function is connected.

1.2. Basic Properties

Theorem 1.8. If \(f \) is an \((IC)\)-a.p. function, then:

(i) \(an \ f \) is \((IC)\)-bounded,

(ii) \(an \ f \) is \((IC)\)-continuous.

Proof. Let \(f \in (IC) \).

(i) According to Remark 1.5, functions \(f \) and \(F \) are bounded, as uniformly a.p. functions. Thus we obtain \((ID)(f) \leq M, \) where \(M > 0 \) is a constant.

(ii) Similarly, by Remark 1.5, functions \(f \) and \(F \) are uniformly continuous (see [5], p. 22). Consequently, an \(f \) is \((IC)\)-continuous.
Now, we shall be occupied with (IC)-aperiodicity of a linear combination of (IC)-a.p. functions, and next with (IC)-aperiodicity of a product of above functions.

Theorem 1.9. The following statements hold:

(i) A linear combination of (IC)-a.p. functions is an (IC)-a.p. function.

(ii) A product of two B-a.p. functions is (IC)-a.p. if and only if the indefinite integral of a product of these functions is bounded.

Proof. (i) Let $f, g \in (IC)$. By Remark 1.5 and theorem on a sum of uniformly a.p. functions (see [5], p. 27), immediately we obtain $f + g \in (IC)$. Moreover, $cf \in (IC)$, where c is a constant.

(ii) Let f, g are B-a.p. functions.

(Necessity) Since $fg \in (IC)$, so its indefinite integral F_{fg} is B-a.p., where $F_{fg}(u) = \int_0^u f(s)g(s)ds$ for $u \in R$. Thus F_{fg} is bounded (see [5], p. 22).

(Sufficiency) Since fg is a uniformly a.p. function and its indefinite integral F_{fg} is bounded, so, by Remark 1.6, we get that a product fg is a (IC)-a.p. function.

Corollary 1.10. A product of two (IC)-a.p. functions is (IC)-a.p. if and only if the indefinite integral of a product of these functions is bounded.

Theorem 1.11. If a sequence (f_k) of (IC)-a.p. functions is (ID)-convergent to a function $f \in C(R)$, then an f is (IC)-a.p.

Proof. Since a sequence (f_k) is (ID)-convergent to an $f \in C(R)$, it follows that for an arbitrary $\varepsilon > 0$ there exists a $k_0 > 0$ such that $(ID)(f, f_{k_0}) < \varepsilon/3$. We have $f_{k_0} \in (IC)$, so for $\tau \in (IE)\{\varepsilon/3; f_{k_0}\}$ there holds

$$(ID)(f, f_{\tau}) \leq (ID)(f, f_{k_0}) + (ID)(f_{k_0}, (f_{k_0})_\tau) + (ID)((f_{k_0})_\tau, f_{\tau}) \leq \varepsilon.$$

Thus $(IE)\{\varepsilon/3; f_{k_0}\} \subset (IE)\{\varepsilon; f\}$, i.e. $f \in (IC)$.

In the following, we shall seek for sufficient condition under which the derivative f' of a function $f \in (IC)$ will be an (IC)-a.p. function, as well.
THEOREM 1.12. If the derivative f' of a B-a.p. function f is uniformly continuous, then f' is an (IC)-a.p. function.

PROOF. It is known that for a B-a.p. function f such that f' is uniformly continuous we have that f' is also B-a.p. (see [5], p. 28). Moreover, it follows

$$F_{f'}(t) = f(t) - f(0) \quad \text{for} \quad t \in \mathbb{R},$$

where $F_{f'}(u) = \int_0^u f'(s)ds$, $u \in \mathbb{R}$. Therefore $F_{f'}$ is a uniformly a.p. function. Consequently, according to Remark 1.5, we obtain $f' \in \overline{\text{(IC)}}$.

Now, we shall investigate the indefinite integral of a uniformly a.p. function. It is known that if the indefinite integral of a B-a.p. function is bounded, then this integral is a B-a.p. function (see [5], the Bohl-Bohr Theorem). We shall give more, namely there follow:

THEOREM 1.13. If f is a B-a.p. function and its indefinite integral F is (IC)-bounded, then F is an (IC)-a.p. function and a $C^{(1)}$ – a.p. function (see [1]).

PROOF. By theorem on the bounded indefinite integral of a uniformly a.p. function, an F is B-a.p., as a bounded function. Moreover, similarly we have $F_{f'}$ is a B-a.p. function, where $F_{f'}(u) = \int_0^u F(s)ds$ for $u \in \mathbb{R}$, because $F_{f'}$ is bounded too. We conclude, using Remark 1.5, that $F \in \overline{\text{(IC)}}$. According to Theorem 7 in [1], we obtain $F \in \overline{C^{(1)}}$. The proof is complete.

REMARK 1.14. If f is an (IC)-a.p. function and the indefinite integral $F_{f'}$ of a function F is bounded, then the indefinite integral F of an f' is (IC)-a.p. and $C^{(1)}$ – a.p. (see [1]).

Finally, we shall be occupied with (IC)-a-periodicity of a function f.

THEOREM 1.15. The following statements hold:

(i) If f is a uniformly continuous function and its indefinite integral F is uniformly a.p., then an f is (IC)-a.p.

(ii) If the derivative f' is a uniformly a.p. function and a function f is (IC)-bounded, then an f is (IC)-a.p. and $C^{(1)}$ – a.p. (see [1]).

(iii) If the derivative f' is an (IC)-a.p. function and the indefinite integral F of a function f is bounded, then an f is (IC)-a.p. and $C^{(1)}$ – a.p. (see [1]).
1.3. Examples

First, we shall give examples of: an \((IC)\)-bounded function which is not \((IC)\)-continuous (Example 1.16) and an \((IC)\)-continuous function which is not \((IC)\)-bounded (Example 1.17).

Let \((\mathbb{Q})\) denote the set of irrational numbers.

Example 1.16. Let \(f\) be the function defined by \(f(x) = \sin \varphi(|x|)\) for \(x \in \mathbb{R}\), where \(\varphi\) is a \(\varphi\)-function (see [6] or [7]) strictly increasing such that the inverse function \((\varphi^{-1})\) has the finite derivative \((\varphi^{-1})'\) on \((0, \infty)\), satisfying the following condition:

\[
(\varphi^{-1})'(t) \downarrow 0 \quad \text{with} \quad t \to \infty.
\]

Then the function \(f\) is \((IC)\)-bounded, because in paper [1], p. 4, there shows that the indefinite integral \(F(x) = \int_0^x \sin \varphi(|s|) \, ds, \quad x \in \mathbb{R}\), is bounded. Moreover, \(f\) is a bounded function, as well. However, the function \(f\) is not \((IC)\)-continuous, since, by the condition (1), \(f\) is not a uniformly continuous function.

In particular, we may also take \(\varphi(u) = u^p\), with \(p > 1\), or \(\varphi(u) = e^u - 1\) for \(u \geq 0\).

Example 1.17. The function defined by \(f(x) = 1 + \cos x, \quad x \in \mathbb{R}\), has the unbounded indefinite integral \(F\), so is not \((IC)\)-bounded. However, \(f\) is an \((IC)\)-continuous function.

Example 1.18. The function \(f\) in the form \(f(x) = 2x \cos(\sqrt{x})\), \(x \in \mathbb{R}\), is unbounded, but its indefinite integral \(F(x) = \sin(x^2), \quad x \in \mathbb{R}\), is bounded.

It is easily given an example of an \((IC)\)-a.p. function. However, let us remark that every constant function which is different from zero doesn't belong to the class \((IC)\).

As regards the relation between \((IC)\)-a.p. and \(B\)-a.p. functions, there holds the following contain: \((IC) \subseteq \mathcal{B}\), where \(\mathcal{B}\) denote the set of uniformly a.p. functions (Examples: 1.19, 1.20).

Example 1.19. Let \(f\) be a \(B\)-a.p. function which has the bounded indefinite integral \(F\). Then \(f \in (IC)\).

In particular, we may also take the function \(f\) in the form \(f(x) = \sin x + \sin(\alpha x)\) for \(x \in \mathbb{R}\), where \(\alpha \in \mathbb{Q}\), since \(F\) is bounded.
Example 1.20. Let \(f \) be a B-a.p. function which has the unbounded indefinite integral \(F \). Then \(f \in (IC) \).

In particular, we may also take the function \(f \) defined by
\[
f(x) = 2 \cos x + \cos(\alpha x)
\]
for \(x \in R \), where \(\alpha \in NQ \). Then \(f \) is a uniformly a.p. function and \(f \not\in (IC) \).

Let us still remark that above function \(f \) is \(C^{(1)} \) – a.p. (see [1]), because the derivative \(f' \) is B-a.p.

Now, we shall give an example of an (\(IC \))-a.p. function which is not \(C^{(1)} \) – a.p. (Example 1.21 and see [1]). An example of a \(C^{(1)} \) – a.p. function which is not (\(IC \))-a.p. is the function from Example 1.20.

Example 1.20. Let
\[
f(x) = \begin{cases}
\left(\frac{x - 2k}{\pi} \right)^2 \frac{1}{x - 2k} & \text{for } x \in \left(\frac{2k - 1}{\pi}, \frac{2k + 1}{\pi} \right) \setminus \left\{ \frac{2k}{\pi} \right\}, \\
0 & \text{for } x = \frac{2k}{\pi},
\end{cases}
\]
\[
g(x) = \begin{cases}
\left(\frac{\sqrt{2x} - 2k}{\pi} \right)^2 \frac{1}{\sqrt{2x} - 2k} & \text{for } x \in \left(\frac{\sqrt{2(2k - 1)}}{2\pi}, \frac{\sqrt{2(2k + 1)}}{2\pi} \right) \setminus \left\{ \frac{\sqrt{2k}}{\pi} \right\}, \\
0 & \text{for } x = \frac{\sqrt{2k}}{\pi},
\end{cases}
\]
where \(k = 0, \pm 1, \pm 2, \ldots \).

Functions \(f \) and \(g \) are periodic with periods \(T_f = 2/\pi, \ T_g = \sqrt{2}/\pi \), respectively. Moreover, \(f \) and \(g \) are continuous functions on \(R \). Derivatives \(f', g' \) exist at every point \(x \in R \), but the derivative \(f' \) is not continuous at points \(x = 2k/\pi \) and the derivative \(g' \) is not continuous at points \(x = \sqrt{2k}/\pi, \ k = 0, \pm 1, \pm 2, \ldots \). Thus the sum \(h = f + g \) is a B-a.p. function and the derivative \(h' \in C(R) \). From where we obtain \(h \notin C^{(1)} \). Using Remark 1.6, we need only to see that the indefinite integral \(H(x) = \int_0^x h(s) ds, \ x \in R \), is bounded. Namely, there exist positive constants \(M_1 \) and \(M_2 \) such that for each \(x \in R \) there exists a \(k_0 \in Z = \{ \ldots , -2 , -1 , 0 , 1 , 2 , \ldots \} \) such that
\[\left| \int_{0}^{x} f(s)ds \right| \leq \left| \int_{0}^{\pi} f(s)ds \right| + \left| \int_{(2k_\alpha+1)/\pi}^{x} f(s)ds \right| \leq M_1 \]

and

\[\left| \int_{0}^{x} g(s)ds \right| \leq M_2. \]

Consequently, taking \(0 < M = 2 \max \{M_1, M_2\} \), for every \(x \in R \) it follows \(|H(x)| \leq M \). Finally, we have \(h \in \overline{(IC)} \).

Example 1.22. Let \(f \) be a \(B \)-a.p. function which have the uniformly continuous derivative \(f' \) and the bounded indefinite integral \(F \). Then there holds \(f \in \overline{(IC)} \cap \overline{C^{(1)}} \).

In particular, let \(f \) be the function in the form \(f(x) = \cos(\alpha x) + \cos(\beta x) \) for \(x \in R \), where \(\alpha, \beta \in R \setminus \{0\} \). Then \(f \in C^{(1)} \) and \(f \in \overline{(IC)} \). If, moreover, we assume that \(\alpha \) and \(\beta \) are incommensurable, then the function \(f \) is not periodic.

1.4. STEKLOV FUNCTIONS

We first recall the basic notation related to Steklov functions.

For a given positive number \(h \) and for a function \(f : R \to R \) which is locally integrable, put

\[S_f(h)(u) = \frac{1}{2h} \int_{u-h}^{u+h} f(s)ds \quad \text{for} \quad u \in R. \]

Then an \(S_f(h) \) is called the Steklov function of an \(f \).

It is easy to see that it follows:

Theorem 1.23. The following statements hold:

(i) If \(f \) is an \((IC) \)-a.p. function, then the Steklov function \(S_f(h) \) is an \((IC) \)-a.p. function and a \(C^{(1)} \) - a.p. function (see [1]).

(ii) If \(f \) is an \((IC) \)-continuous function, then \(\lim_{h \to 0} (ID)(f, S_f(h)) = 0 \).

Proof. (i) We assume that \(f \in \overline{(IC)} \). Then, by Remark 1.5, \(f \) and \(F \) are \(B \)-a.p. functions. Moreover, we know that \(S_f(h) \) is a uniformly a.p. function,
as well (see [5]). Let us still remark that the indefinite integral \(F_{S_f(h)} \) of an
\(S_f(h) \) is bounded, from where, according to Remark 1.6, we obtain
\(S_f(h) \in (IC) \). The function \(S_f(h) \) is \(C^{(1)} \) - a.p. (see [2]), too.

(ii) In the same way as in [5], for an arbitrary but fixed \(t \in R \) we write

\[
| f(t) - S_f(h)(t) | \leq \frac{1}{2h} \int_{-h}^{h} | f(t) - f(s + t) | ds,
\]

\[
| F(t) - F_{S_f(h)}(t) | \leq \frac{1}{2h} \int_{-h}^{h} \int_{0}^{t} (f(s) - f(s + x)) ds dx
\]

for \(h > 0 \). Since \(f \) is an \((IC) \)-continuous function, so for each \(\varepsilon > 0 \) there exists a
\(\delta > 0 \) such that \((ID)(f, f_s) \leq \varepsilon/3 \) for \(s \in R, \ |s| < \delta \). Thus for all \(t \in R \) and
\(h \in (0, \delta) \) we obtain \((ID)(f, S_f(h)) \leq \varepsilon \), and the proof is complete.

COROLLARY 1.24. If \(f \) is an \((IC) \)-a.p. function, then

\[
\lim_{h \to 0} (ID)(f, S_f(h)) = 0.
\]

2. \((IC)^{(n)}\) - ALMOST PERIODIC FUNCTIONS

2.1. DEFINITIONS

We first present basic notations related to \((IC)^{(n)}\) -almost periodic functions.

Let \(N_0 \) denote the set \(N \cup \{0\} \).

By \(C^{(n)}(R) \) we denote the set of functions from \(R \) into itself with \(n \)-th
continuous derivatives on \(R \), for \(n \in N_0 \). For functions \(f, g \in C^{(n)}(R) \) we
define \((ID)^{(n)}\) – distans in the following

\[
(ID)^{(n)}(f, g) = \sup_{t \in R} \left(| f(t) - g(t) | + \sum_{i=1}^{n} | f^{(i)}(t) - g^{(i)}(t) | + T(f, g)(t) \right),
\]

where \(T \) is defined in the section 1.1.

We say that an \(f \in C^{(n)}(R) \) is \((IC)^{(n)}\)-bounded iff \((ID)^{(n)}(f) < \infty \), where
\((ID)^{(n)}(f) = (ID)^{(n)}(f, 0) \). We say that \(f \in C^{(n)}(R) \) is an \((IC)^{(n)}\)-continuous
function iff \(\lim_{h \to 0} (ID)^{(n)}(f, f_h) = 0 \). A sequence \((f_k)\) in \(C^{(n)}(R)\) will be called \((ID)^{(n)}\) -convergent to an \(f \in C^{(n)}(R) \) iff \(\lim_{k \to 0} (ID)^{(n)}(f, f_k) = 0 \).

Similarly as in Theorem 1.1, we obtain:

Theorem 2.1. If a sequence \((f_k)\) of \((IC)^{(n)}\)-continuous functions is \((ID)^{(n)}\) -convergent to a function \(f \in C^{(n)}(R) \), then an \(f \) is \((IC)^{(n)}\)-continuous.

A function \(f \in C^{(n)}(R) \) is called \((IC)^{(n)}\) – almost periodic ((\(IC)^{(n)}\) – a.p.) iff an \(f \) is \((IC)\)-a.p. and \(C^{(n)} \) – a.p. (see [1]), \(n \in N_0 \). By \((IC)^{(n)}\) we denote the set of \((IC)^{(n)}\) – a.p. functions, i.e. we have

\[
(\overline{(IC)^{(n)}}) = (\overline{IC}) \cap \overline{C^{(n)}}.
\]

For an arbitrary \(n \in N_0 \) every \((IC)^{(n+1)}\) – a.p. function is \((IC)^{(n)}\) – a.p. Moreover, every \((IC)^{(1)}\) – a.p. function is an \(L\)-a.p. function (see [1], [8]).

2.2. Basic Properties

Properties of \((IC)^{(n)}\) – a.p. functions we obtain using known theorems related to \((IC)\)-a.p. and \(C^{(n)} \) – a.p. functions (see [1], [2]).

Theorem 2.2. If \(f \) is an \((IC)^{(n)}\) – a.p. function, then:

(i) an \(f \) is \((IC)^{(n)}\) – bounded,

(ii) an \(f \) is \((IC)^{(n)}\) – continuous.

Proposition 2.3. If a sequence \((f_k)\) of \((IC)^{(n)}\) – a.p. functions \((ID)^{(n)}\) – convergent to a function \(f \in C^{(n)}(R) \), then an \(f \) is \((IC)^{(n)}\) – a.p.

Theorem 2.4. The following statements hold:

(i) A linear combination of \((IC)^{(n)}\) – a.p. functions is an \((IC)^{(n)}\) – a.p. function.

(ii) A product of two \(C^{(n)} \) – a.p. functions is \((IC)^{(n)}\) – a.p. if and only if the indefinite integral of a product of these functions is bounded.
(iii) If the derivative \(f^{(n+1)} \) of a \(C^{(n)} \)-a.p. function \(f \) is uniformly continuous, then the derivative \(f' \) is an \((IC)^{(n)} \)-a.p. function.

(iv) If \(f \) is an \((IC)^{(n)} \)-a.p. function and the indefinite integral \(F \) of \(f \), where \(F \) is the indefinite integral of \(f \), is bounded, then \(F \) is \((IC)^{(n+1)} \)-a.p. function.

Now, we shall be occupied with \((IC)^{(n)} \)-a.periodicity of a function \(f \).

Theorem 2.5. The following statements hold:

(i) If the derivative \(f^{(n)} \) of a function \(f \) is uniformly continuous and the indefinite integral \(F \) of \(f \) is \(C^{(n)} \)-a.p., then \(f \) is an \((IC)^{(n)} \)-a.p. function.

(ii) If the derivative \(f' \) is an \((IC)^{(n)} \)-a.p. function and the indefinite integral \(F \) of a function \(f \) is bounded, then \(f \) is an \((IC)^{(n+1)} \)-a.p. function.

Finally, we shall give an example of an \((IC)^{(n)} \)-a.p. function.

Example 2.6. Let \(f \) be the function defined by \(f(x) = \cos(\alpha x) + \sin(\beta x) \) for \(x \in \mathbb{R} \), where \(\alpha, \beta \in \mathbb{R} \setminus \{0\} \) are incommensurable. Then \(f \in C^{(n)} \) and \(f \in (IC) \), because \(F \) is a bounded function. Thus \(f \in C^{(n)}(\mathbb{R}) \) is a \((IC)^{(n)} \)-a.p. function, but not periodic.

2.3. Steklov Functions

In this section we shall give the theorem on \((IC)^{(n)} \)-periodicity of Steklov functions. Using Theorem 1.23 and the theorem on approximation of \(C^{(n)} \)-a.p. functions by their Steklov functions (see [2]), similarly as in the part 1.4, we obtain:

Theorem 2.7. The following statements hold:

(i) If \(f \) is an \((IC)^{(n)} \)-a.p. function, then the Steklov function \(S_f(h) \) is an \((IC)^{(n+1)} \)-a.p. function.

(ii) If \(f \) is an \((IC)^{(n)} \)-continuous function, then \(\lim_{h \to 0} (ID)^{(n)}(f, S_f(h)) = 0 \).
COROLLARY 2.8. If f is an $(IC)^{(n)}_{\sigma}$ - a.p. function, then

$$\lim_{h \to 0} (ID)^{(a)}_{\sigma}(f, S_f(h)) = 0.$$

3. $(IC)^{(a)}_{\sigma}$ – ALMOST PERIODIC FUNCTIONS

3.1. DEFINITIONS

We first recall basic notations related to $(IC)^{(a)}_{\sigma}$ – almost periodic functions.

By $C^{(a)}(R)$ we denote the set of functions from R into itself which have every derivatives. For functions $f, g \in C^{(a)}(R)$ and a sequence $a = (a_i)$ such that $a_i > 0$, $i = 1, 2, ..., $ we define $(ID)^{(a)}_{\sigma}$ – distans in the following

$$(ID)^{(a)}_{\sigma}(f, g) = \sup_{t \in R} \left(|f(t) - g(t)| + \sum_{i=1}^{\infty} a_i |f^{(i)}(t) - g^{(i)}(t)| + T(f, g)(t) \right),$$

where T is defined in the section 1.1.

We say that an $f \in C^{(a)}(R)$ is $(IC)^{(a)}_{\sigma}$ – bounded iif $(ID)^{(a)}_{\sigma}(f) < \infty$, where $(ID)^{(a)}_{\sigma}(f) = (ID)^{(a)}_{\sigma}(f, 0)$. We say that $f \in C^{(a)}(R)$ is an $(IC)^{(a)}_{\sigma}$ – continuous function iif $\lim_{h \to 0} (ID)^{(a)}_{\sigma}(f, f_h) = 0$. A sequence (f_k) in $C^{(a)}(R)$ will be called $(ID)^{(a)}_{\sigma}$ – convergent to an $f \in C^{(a)}(R)$, iif $\lim_{h \to 0} (ID)^{(a)}_{\sigma}(f, f_k) = 0$.

Similarly as in Theorem 1.1, we get:

THEOREM 3.1. If a sequence (f_k) of $(IC)^{(a)}_{\sigma}$ – continuous functions is $(ID)^{(a)}_{\sigma}$ – convergent to a function $f \in C^{(a)}(R)$, then an f is $(IC)^{(a)}_{\sigma}$ – continuous.

We say that an $f \in C^{(a)}(R)$ is conditionally locally bounded with respect to a sequence $a = (a_i)$: $a_i > 0$, $a_{i+1} \leq a_i$, $i = 1, 2, ...$, (i.e. $f \in (CBC^{(a)}_{a, loc})$) iif for an arbitrary closed interval $<x, y>$ and for each $i = 0, 1, 2, ...$ there exists a positive number $M_i = M_{i, f}^{<x, y>}$ such that
\[
\max_{t \in \mathbb{R}} |f^{(i)}(t)| = M_i \quad \text{and} \quad \sum_{i=1}^{\infty} a_i M_{i+1} < \infty.
\]

A function \(f \in (C^b)_{a,loc}^{(\infty)} \) is called \((IC)_{a}^{(\infty)}\) - almost periodic \(((IC)_{a}^{(\infty)}\) - a.p.) iff an \(f \) is \((IC)\) - a.p. and \((C)_{a}^{(\infty)}\) - a.p. (see [3]). By \((IC)_{a}^{(\infty)}\) we denote the set of \((IC)_{a}^{(\infty)}\) - a.p. functions, i.e. we have

\[
(IC)_{a}^{(\infty)} = (IC) \cap C_{a}^{(\infty)}.
\]

It is seen that every \((IC)_{a}^{(\infty)}\) - a.p. function is \((IC)_{a}^{(n)}\) - a.p., for an arbitrary fixed \(n \in \mathbb{N}_0 \). Every \((IC)_{a}^{(\infty)}\) - a.p. function is an \(L \)-a.p. function (see [3], [8]), as well.

3.2. BASIC PROPERTIES

Properties of \((IC)_{a}^{(\infty)}\) - a.p. functions we obtain in the same way as properties of \((IC)_{a}^{(n)}\) - a.p. functions, using known theorems related to \((IC)\) - a.p. and \(C_{a}^{(\infty)}\) - a.p. functions (see [3]).

THEOREM 3.2. The following statements hold:

(i) Every \((IC)_{a}^{(\infty)}\) - a.p. function is \((IC)_{a}^{(\infty)}\) - bounded and \((IC)_{a}^{(\infty)}\) - continuous.

(ii) A linear combination of \((IC)_{a}^{(\infty)}\) - a.p. functions is an \((IC)_{a}^{(\infty)}\) - a.p. function.

(iii) Let be given the sequence \(b = (b_i): b_i = a_{i+1}^2 / c_i \) with \(c_i > 0, \ c_i \leq c_{i+1} \), \(c_i \geq \left(\frac{i+1}{((i+1)/2)} \right) \), \(i = 1, 2, \ldots \), and \(\sum_{i=1}^{\infty} 2^i / c_i < \infty \). Moreover, let the indefinite integral of a product of two \((IC)_{a}^{(\infty)}\) - a.p. functions \(f, g \) is bounded. Then a product \(fg \) is an \((IC)_{b}^{(\infty)}\) - a.p. function.

(iv) If a sequence \((f_k) \) of \((IC)_{a}^{(\infty)}\) - a.p. functions is \((ID)_{a}^{(\infty)}\) - convergent to a function \(f \in (C^b)_{a,loc}^{(\infty)} \), then an \(f \) is \((IC)_{a}^{(\infty)}\) - a.p.

(v) Let \(\sup \{a_i / a_{i+1} : i = 1, 2, \ldots \} < \infty \) and let \(f \) be a \(C_{a}^{(\infty)}\) - a.p. function. Then the derivative \(f' \) is an \((IC)_{a}^{(\infty)}\) - a.p. function.
(vi) If \(f \) is an \((IC)_a^{(\sigma)}\) – a.p. function and the indefinite integral \(F_F \) of an \(F \), where \(F \) is the indefinite integral of an \(f \), is bounded, then \(F \) is also an \((IC)_a^{(\sigma)}\) – a.p. function.

(vii) If the indefinite integral \(F \) of a function \(f \) is a \(C_a^{(\sigma)} \) – a.p. function and \(\sup \{ a_i/a_{i+1} : i = 1, 2, \ldots \} < \infty \) then \(f \) is \((IC)_a^{(\sigma)}\) – a.p.

(viii) If the derivative \(f' \) is an \((IC)_a^{(\sigma)}\) – a.p. function and the indefinite integral \(F \) of a function \(f \) is bounded, then \(f \) is an \((IC)_a^{(\sigma)}\) – a.p. function.

Proof. For example, we shall show (vi). Let \(f \in (IC)_a^{(\sigma)} \). Since an \(F \) is uniformly a.p. and the indefinite integral \(F_F \) is bounded, so, according to Remark 1.6, we get \(F \in (IC) \). Moreover, \(F \in C_a^{(\sigma)} \) as the bounded indefinite integral \(F \) of a \(C_a^{(\sigma)} \) – a.p. function \(f \) (see [3]). Consequently, an \(F \) is \((IC)_a^{(\sigma)}\) – a.p.

Now, we shall give an example of an \((IC)_a^{(\sigma)}\) – a.p. function.

Example 3.3. Let \(f \) be the function defined by \(f(x) = \sin(\alpha x) + \sin(\beta x) \) for \(x \in \mathbb{R} \), with \(\alpha, \beta \in (-1,1) \) which are incommensurable. Then we have \(f \in (CBC_a^{(\sigma)}) \) and \(f \in (IC)_a^{(\sigma)} \), for a positive sequence \(a = (a_i) \) such that \(\sum_{i=1}^{\infty} a_i < \infty \). Moreover, \(f \in (IC) \), since \(F \) is bounded. Thus we obtain that \(f \) is an \((IC)_a^{(\sigma)}\) – a.p. function, but not periodic.

3.3. Steklov Functions

Finally, we shall be occupied with \((IC)_a^{(\sigma)}\) – a.periodicity of Steklov functions. Using Theorem 1.23 and the theorem on approximation of \(C_a^{(\sigma)} \) – a.p. functions by their Steklov functions (see [3]), we obtain:

Theorem 3.4. The following statements hold:

(i) If \(f \) is an \((IC)_a^{(\sigma)}\) – a.p. function, then the Steklov function \(S_f(h) \) is also \((IC)_a^{(\sigma)}\) – a.p.

(ii) If \(f \) is an \((IC)_a^{(\sigma)}\) – continuous function, then \(\lim_{h \to 0} (ID)_a^{(\sigma)}(f, S_f(h)) = 0. \)
COROLLARY 3.5. If f is an $(IC)^{(\omega)}_a - a.p.$ function, then
\[
\lim_{h \to 0} (ID)^{(\omega)}_a (f, S_f(h)) = 0.
\]

REFERENCES

(Faculty of Mathematics and Computer Science Adam Mickiewicz University, ul. Jana Matejki 48/49, 60-769 Poznań, Poland, (e-mail:krem@amu.edu.pl)).

Received on 28.09.2000 and, in revised form, on 31.12.2001.