ON A RADIAL PERIODIC SOLUTION TO THE DIFFUSION EQUATION FOR THE EXTERIOR OF A BALL

ABSTRACT: The subject of the paper is the construction of a periodic radial solution to the diffusion parabolic differential equation (1) \(\Delta u(x,t) - D_t u(x,t) = f(x,t) \), where \(\delta = D_{x_1}^2 + D_{x_2}^2 + D_{x_3}^2 \), \(x = (x_1, x_2, x_3) \), \(t \in (-\infty, \infty) \), in radial coordinates \((r,t)\), \(r = |x| = (x_1^2 + x_2^2 + x_3^2)^{\frac{1}{2}} \), in the exterior of the ball \(D_r \), \(\{ (r,t) : r > R, t \in (-\infty, \infty) \} \).

Equation (I) is of the from (II) \(D_r^2(W(r,t)) - D_t(W(r,t)) = 0 \), \(W(r,t) = rU(r,t) \). By the suitable Green function \((r,t,p,s) \rightarrow G(r,t,p,s) \), we construct the periodic solution with respect to the variable \(t \) of equation (II) as the potential \(W(r,t) \) of the double layer.

KEY WORDS: a boundary-value problem, a periodic solution, Green function, Green potentials.

1. INTRODUCTION

The subject of the paper is the construction of a periodic solution to the equation

\[
PW(r,t) = D_r^2W(r,t) - D_tW(r,t) = 0
\]

in the domain

\(D = \{ (r,t) : r \in (R,\infty), t \in (-\infty,\infty) \} \).

To the construction of the solution we apply the suitable Green function \(G \). We suppose that solution is the potential of the double layer:

\[
W_1(r,t) = \int_{-\infty}^{t} H(s)(t-s)^{-3/2}(r-p)\exp\left(\frac{-(r-p)^2}{4(t-s)}\right)ds.
\]

In [1], the similar problem for the equation \((D_r^2 - D_t)u(r,t) = 0 \) and for the strip is treated. In [3], periodic solution of a parabolic problem is studied.

2. GREEN FUNCTION \(G \)

Let

\[
U(r,t,p,s) = A(t-s)^{-1/2}\exp(B(t,s)(r-p)^2),
\]
where
\[A = (2\sqrt{\pi})^{-1} \quad \text{and} \quad B(t, s) = (-4(t - s))^{-1}, \]
denote the fundamental solution to the equation \(PU = D_r^2 U - D_t U = 0. \)

By [2], the function
\[(r, t, p, s) \rightarrow G(r, t, p, s) = U(r, t, p, s) - U(2R - r, t, p, s), \quad (r, t, p, s) \in D_1, \]
where \(D_1 = \{(r, t, p, s) : -\infty < s < t, \ t \in (-\infty, \infty), \ r > R, \ p > R, \ r \neq p\} \), is the Green function to the equation
\[PG(r, t, p, s) = 0, \]
to the half space \(r > R \) and to the Dirichlet boundary-value conditions:
\[G(R, t, p, s) = G(\infty, t, p, s) = 0. \]

3. Green potentials

Let us consider the Green potential
\[W(r, t) = \int_{-\infty}^{t} H(s) D_p G(r, t, R, s) ds \]
and the potential of the double layer
\[W_1(r, t) = \int_{-\infty}^{t} H(s) (t - s)^{-3/2} (r - p) \exp \left(-\frac{(r - p)^2}{4(t - s)} \right) ds. \]

4. Motivation of the problem

Consider the solution \((r, t, T) \rightarrow W(r, t, T) \) of the Cauchy problem to the equation \(PW(r, t) = 0. \) By [1], the solution is of the form
\[W(r, t, T) = \int_{R}^{\infty} W(p, T) G(r, t, p, T) dp, \]
where
\[PU = D_r^2 U - D_t U = 0. \]

Let \(M(T) = \sup_{p \in (R, \infty)} |W(p, T)| \) and let \((K)\) denote the class of all functions \(W \) for which \(M(T) \) is bounded.
Lemma. If \(W \in (K) \) then:

1° the inequality

\[
|W(r,t,T)| \leq M(T) \int_R^T (t-T)^{-1/2} \exp \left(-\frac{(r-p)^2}{4(t-T)} \right) \, dp
\]

holds,

2° \(W(r,t) \to 0 \) as \(T \to -\infty \) for every \(t \in (-\infty, \infty) \).

Proof. 1°: Since \(G \geq 0 \) thus \(G \leq U(r,t,r,T) \) and we obtain 1°.

2° is a consequence of 1°.

5. Properties of the Potential \(W \)

Let us consider the Green potential

\[
W_i(r,t) = \int_{-\infty}^t H(s)(t-s)^{-3/2} (r-R) \exp \left(-\frac{(r-R)^2}{4(t-s)} \right) \, ds.
\]

Denote by \((K_w)\) the class of all functions \(t \to H(t) \) continuous and bounded for \(t \in (-\infty, \infty) \) with the period \(w \).

Theorem. If \(H \in (K_w) \) then:

1° \(PW_i(r,t) = 0, \ (r,t) \in D \),

2° \(W_i(r,t) \to H(t) \) as \((r,t) \to (R,t) \),

3° \(W_i(r,t) \to 0 \) as \((r,t) \to (\infty,t) \) uniformly for every \(t \in (-\infty, \infty) \),

4° \((r,t) \to W_i(r,t)\) is the periodic function with respect to \(t \) with the period \(w \).

Proof. 1°: BY [2], we obtain 1°, 2°.

3°: We have

\[
W_i(r,t) = \int_{-\infty}^t H(s) \frac{(r-R)(r-R)^3}{(t-s)^{3/2} (r-R)^3} \exp(B(t,s)(r-R)^2) \, ds.
\]

By the last formula, we get the inequality

\[
|W_i(r,t)| \leq c(r-R)^{-2} \int_{-\infty}^t H(s) \frac{(r-R)^3}{(t-s)^{3/2}} \exp(B(t,s)(r-R)^2) \, ds.
\]
Supplying in the last integral the change of the integral variable

\[z = \frac{r - R}{(t - s)^{1/2}}, \quad dz = -\frac{2(r - R)}{(t - s)^{3/2}} ds, \]

we obtain

\[|W_1(r, t)| \leq c \int_0^\infty z^3 \exp(-z^2) dz \to 0 \quad \text{as} \quad r \to \infty \]

with \(c = \sup_{s \in (-\infty, \infty)} |H(s)|. \)

4°: We have

\[|W_1(r, t + w)| = \int_{-\infty}^{t+w} H(s)D_\rho G(r - R, t + w - s) ds. \]

Applying in the last integral the change of the integral variables

\[s = w + z, \quad ds = dz, \quad z \in (-\infty, \infty), \]

we obtain

\[W_1(r, t + w) = \int_{-\infty}^{t} H(w + z)D_\rho G(r - R, t - z) dz = W_1(r, w). \]

REFERENCES

(Institute of Mathematics, Cracow University of Technology, Warszawska 24, Kraków)
Received on 02.07.2001 and, in revised form, on 08.10.2001.