ALEKSANDER WASZAK

ON THE STRONG CONVERGENCE IN SOME SEQUENCE SPACES

ABSTRACT: The purpose of this paper is to introduce and study an idea of lacunary strong \((A, \varphi)\)-convergence with respect to a modulus function. In courses of these investigations we study some connections between \((A, \varphi)\)-strong summability of sequences and lacunary strong convergence with respect to a modulus or lacunary statistical convergence.

KEY WORDS: sequence spaces, modular spaces.

1. INTRODUCTION

In papers of J. Musielak [9], J. Musielak and W. Orlicz [12], W. Orlicz [15] and myself [18] there are considered and investigated some modular spaces connected with strong \((A, \varphi)\)-summability of sequences.

The spaces \(N_\Theta\) of lacunary strong convergence of sequences have been introduced by A. Freedman, J. Somberg and M. Raphel [4], where

\[
N_\Theta = \left\{ x = (t_\nu) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{\nu \in I_r} |t_\nu - s| = 0 \text{ for some } s \right\}
\]

and \(\Theta = (k_\nu)\) is a given lacunary sequence.

If \(f\) is a given modulus function (which have been introduced by H. Nakano [14]) and \(A = (a_{n\nu})\) is a given matrix, then applying the concept of T. Bilging [1] we may define the sequence space (compare e.g. [2], [3] or [8])

\[
N_\Theta(A, f) = \left\{ x = (t_\nu) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{\nu \in I_r} f\left(\sum_{\nu = 1}^\infty a_{n\nu} t_\nu - s \right) = 0 \text{ for some } s \right\}
\]

Throughout this paper it will be supposed that \(s = 0\) and that we take the sequence \((\sigma_\nu \varphi)\), where \(\sigma_\nu \varphi(x) = \sum_{\nu = 1}^\infty a_{n\nu} \varphi(|t_\nu|)\) instead of the sequence \(\sum_{\nu = 1}^\infty a_{n\nu} t_\nu\).

Finally, the space \(T_\Theta((A, \varphi), f)\) of lacunary strongly convergent sequences is defined by the formula
\[T_\Theta((A, \varphi), f) = \left\{ x = (t_v) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} f(|\sigma_n^\Theta(x)|) = 0 \right\}. \]

2. PRELIMINARIES

Let \(T, T_b, T_0, T_f \) denote spaces of all real sequences, bounded real sequences, real sequences convergent to zero and sequences with a finite number of elements different from zero, respectively. Sequences belonging to \(T \) will be denoted by \(x = (t_v), \ y = (s_v), \ x_m = (t_v^m), \ |x| = (|t_v|), \ 0 = (0) \) and \(x^q \) will mean the sequence \(t_1, t_2, \ldots, t_q, 0, 0, \ldots \). Moreover, we shall write \(e_p, e^q, e^p_q \) for the following sequences: \(0, 0, \ldots, 1, 0, \ldots \) (with 1 at the \(p \) th place); \(1, 1, \ldots, 1, 0, \ldots \) (with 1 at the first \(q \) places); \(0, 0, 1, 0, 0, 1, 0, \ldots \) (with 1 at the \(p \) th, \((p + 1) \) st, \((p + q - 1) \) st place), respectively.

A sequence of positive integers \(\Theta = (k_r) \) is called lacunary if \(k_0 = 0, k_r < k_{r+1} \) for all \(r \) and if \(I_r = [k_{r-1}, k_r) \) then \(h_r = k_r - k_{r-1} \to 0 \) as \(r \to \infty \). In the following the quotient \(k_r/k_{r-1} \) will be denoted by \(q_r \), (compare [4]).

Let \(A = (a_{nv}) \) be an infinite matrix such that:

a) is nonnegative i.e. \(a_{nv} \geq 0 \) for \(n, v = 1, 2, \ldots, \)

b) for an arbitrary positive integer \(n \) (or \(v \)) there exists a positive integer \(v_0 \)

(or \(n_0 \)) such that \(a_{nv_0} \neq 0 \) (or \(a_{nv} \neq 0 \)), respectively,

c) there exist \(\lim_{n \to \infty} a_{nv} = 0 \) for \(v = 1, 2, \ldots, \)

d) \(\sup_n \sum_{v=1}^{\infty} a_{nv} = K < \infty \),

e) \(\sup_n a_{nv} \to 0 \) as \(v \to \infty \).

By a \(\varphi \)-function we understood a continuous non-decreasing function \(\varphi(u) \) defined for \(u \geq 0 \) and such that \(\varphi(0) = 0, \ \varphi(u) > 0 \) for \(u > 0 \) and \(\varphi(u) \to \infty \) as \(u \to \infty \). The symbol \(\varphi(|x|) \) means the function \(\varphi(|x(t)|) \).

A \(\varphi \)-function \(\varphi \) is called non weaker then a \(\varphi \)-function \(\psi \) and we write \(\psi \preceq \varphi \) if there are constants \(c, b, k, l > 0 \) such that \(c \psi(lu) \leq b \varphi(ku) \), (for all, large or small \(u \), respectively).

\(\varphi \)-functions \(\varphi \) and \(\psi \) are called equivalent and we write \(\varphi \sim \psi \) if there are positive constants \(b_1, b_2, c, k_1, k_2, l \) such that \(b_1 \varphi(k_1u) \leq c \psi(lu) \leq b_2 \varphi(k_2u) \), (for all, large or small \(u \), respectively).
A \varphi\text{-function} \varphi is said to satisfy the condition (\Delta_2), (for all, large or small \(u \), respectively) if for some constant \(k > 1 \) there is satisfied the inequality \(\varphi(2u) \leq k\varphi(u) \). For more properties of \varphi\text{-function} see e.g. [7], [10], [11].

By a modulus function we understood the increasing function \(f \) from \([0, \infty)\) to \([0, \infty)\) such that: \(f(x) = 0 \) if and only if \(x = 0 \), \(f(x + y) \leq f(x) + f(y) \) for \(x, y \geq 0 \) and is continuous from the right at 0, (compare [14]).

3. SPACES OF STRONGLY \((A, \varphi)\) – SUMMABLE SEQUENCES

For a given \varphi\text{-function} \(\varphi(u) \) and the matrix \(A = (a_{nv}) \) we adopt the following notation:

\[
\begin{align*}
\sigma_n^{\varphi}(x) &= \sum_{\nu=1}^{\infty} a_{nv} \varphi([t_{\nu}]) \quad \text{for} \ n = 1, 2, ..., \\
T_0 = \left\{ x \in T : \sigma_n^{\varphi}(x) < \infty \quad \text{for} \ n = 1, 2, ... \quad \text{and} \quad \lim_{n \to \infty} \sigma_n^{\varphi}(x) = 0 \right\}, \\
T^0 = \left\{ x \in T : \lambda x \in T_0 \quad \text{for an arbitrary} \ \lambda > 0 \right\}, \\
T^* = \left\{ x \in T : \lambda x \in T_0 \quad \text{for a certain} \ \lambda > 0 \right\}.
\end{align*}
\]

Sequences \(x \) belonging to \(T^* \) are called strongly \((A, \varphi)\) – summable to zero.

A list of the most interesting properties concerning the space \(T^* \) is presented below, (compare also [9], [12], [15] or [18]).

1. \(T_f \subset T^\varphi, \ T_\varphi \subset T^0 \subset T^* \).
2. If \(a_{nv} \to 0 \) as \(n \to \infty \) for all \(v \), then \(e^p, e^q, e^q_\varphi \in T_\varphi \).
3. For an arbitrary \varphi\text{-function} \varphi we have \(T_b \cap T^\varphi = T_b \cap T^* \).
4. For arbitrary two \varphi\text{-function} \varphi and \psi the following identity holds
 \(T_b \cap T^\varphi = T_b \cap T^\psi \).
5. If \(\psi < \varphi \) then \(T_\varphi \subset T_\psi \) and \(T^* \subset T^* \).
6. If the \varphi\text{-function} \(\varphi(u) \) satisfiess the condition \((\Delta_2)\) then \(T_\varphi = T^* \).

4. SPACES OF LACUNARY STRONGLY CONVERGENT SEQUENCES

Let \(\varphi \) and \(f \) be given \varphi\text{-function} and modulus function, respectively. Moreover, let a matrix \(A \) and a lacunary sequence \(\Theta \) be given. We introduce sequence space \(T_\Theta((A, \varphi), f) \) by the formula:
\[T_\Theta((A, \varphi), f) = \left\{ x = (t_v) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_{nv} \varphi(|t_v|) \right) = 0 \right\}. \]

The sequence \(x \) is said to be lacunary strong \((A, \varphi)\)-convergent to zero with respect to a modulus \(f \), if \(x \in T_\Theta((A, \varphi), f) \).

Let us remark that in particular we have:

1° If \(\varphi(u) = u \) for all \(u \), then we obtain the space

\[N^0_\Theta(A, f) = \left\{ x = (t_v) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_{nv} t_v \right) = 0 \right\}, \]

which was defined and considered in [1].

2° If \(f(v) = v \) then \(T_\Theta((A, \varphi), v) = T_\Theta((A, \varphi)) \), where

\[T_\Theta((A, \varphi)) = \left\{ x = (t_v) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} \sum_{v=1}^{\infty} a_{nv} \varphi(|t_v|) = 0 \right\}. \]

3° If \(A = I \) then we obtain the following sequence space

\[T_\Theta((I, \varphi), f) = \left\{ x = (t_v) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} f(\varphi(|t_v|)) = 0 \right\}. \]

4° If \(A = I \) and moreover \(\varphi(u) = u \) and \(f(v) = v \) for all \(u \) and \(v \), respectively, then we have the sequence space

\[N^0_\Theta = T_\Theta((I, u), v) = \left\{ x = (t_v) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} t_v = 0 \right\}, \]

(compare [1]).

5° If the matrix \(A = (a_{nv}) \) is defined by the formula:

\[a_{nv} = \frac{1}{n} \text{ for } n \geq v \text{ and } a_{nv} = 0 \text{ for } n < v, \]

then applying the properties of \(\Theta \) and \(f \) we obtain the sequence space

\[T_\Theta((A, \varphi), f) = \left\{ x = (t_v) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} f \left(\frac{1}{n} \sum_{v=1}^{n} \varphi(|t_v|) \right) = 0 \right\}. \]

Moreover, we have the following inequalities
\[
\frac{1}{h_r} f \left(\frac{1}{q_r} \min_{1 \leq v \leq k_{r-1}} \{ \varphi(\| t_v \|) \} \right) \leq \frac{1}{h_r} \sum_{n \in \mathbb{N}} f \left(\frac{1}{n} \sum_{v=1}^n \varphi(\| t_v \|) \right) \leq f \left(\frac{1}{k_{r-1} + 1} \sum_{v=1}^{k_r} \varphi(\| t_v \|) \right).
\]

Theorem 1. Let \(f \) be a any modulus function and let \(\varphi \) function \(\varphi \), the matrix \(A \) and the sequence \(\Theta \) be given. If

\[
w((A, \varphi), f) = \left\{ x = (t_v) : \lim_{m \to \infty} \frac{1}{m} \sum_{n=1}^m f \left(\left| \sum_{v=1}^n a_{nv} \varphi(\| t_v \|) \right| \right) = 0 \right\}
\]

then the following relations are true:

(a) If \(\liminf_{r} q_r > 1 \), then we have \(w((A, \varphi), f) \subseteq T_\Theta ((A, \varphi), f) \).

(b) If \(\limsup_{r} q_r < \infty \), then we have \(T_\Theta ((A, \varphi), f) \subseteq w((A, \varphi), f) \).

(c) If \(1 < \liminf_{r} q_r \leq \limsup_{r} q_r < \infty \), then \(T_\Theta ((A, \varphi), f) = w((A, \varphi), f) \).

Proof. (a). Let us supoese that \(x \in w((A, \varphi), f) \). There exists \(\delta > 0 \) such that \(q_r > 1 + \delta \) for sufficiently large \(r \) and we have \(h_r/k_r \geq \delta/(1 + \delta) \) for sufficiently large \(r \). Consequently,

\[
\frac{1}{h_r} \sum_{n=1}^{k_r} f \left(\left| \sum_{v=1}^n a_{nv} \varphi(\| t_v \|) \right| \right) \geq \frac{1}{k_r} \sum_{n \in \mathbb{N}} f \left(\left| \sum_{v=1}^n a_{nv} \varphi(\| t_v \|) \right| \right) = \frac{h_r}{k_r} \frac{1}{h_r} \sum_{n \in \mathbb{N}} f \left(\left| \sum_{v=1}^n a_{nv} \varphi(\| t_v \|) \right| \right) \geq \frac{\delta}{1 + \delta} \frac{1}{h_r} \sum_{n \in \mathbb{N}} f \left(\left| \sum_{v=1}^n a_{nv} \varphi(\| t_v \|) \right| \right).
\]

Finally, \(x \in T_\Theta ((A, \varphi), f) \).

Proof. (b). The condition \(\limsup_{r} q_r < \infty \) implies that there exists a constant \(M > 0 \) such that \(q_r < M \) for every \(r \). If \(x \in T_\Theta ((A, \varphi), f) \) and \(\varepsilon \) is an arbitrar positive number, then there exists an index \(m_0 \) such that

\[
H_{m_0} = \frac{1}{h_m} \sum_{n \in \mathbb{N}} f \left(\left| \sum_{v=1}^n a_{nv} \varphi(\| t_v \|) \right| \right) < \varepsilon.
\]
for every $m \geq m_0$. Thus, we can find a positive constant L such that $H_m \leq L$ for all m. In the following choosing an integer α such that $k_{r-1} < \alpha < k_r$ we obtain

$$I = \frac{1}{\alpha} \sum_{n=1}^{\alpha} f\left(\sum_{v=1}^{\infty} a_{n,v} \varphi(\{t_v\}) \right) \leq \frac{1}{k_{r-1}} \sum_{n=1}^{k_r} f\left(\sum_{v=1}^{\infty} a_{n,v} \varphi(\{t_v\}) \right) = I_1 + I_2$$

where

$$I_1 = \frac{1}{k_{r-1}} \sum_{m=1}^{m_0} \sum_{n \in I_m} f\left(\sum_{v=1}^{\infty} a_{n,v} \varphi(\{t_v\}) \right),$$

$$I_2 = \frac{1}{k_{r-1}} \sum_{m=m_0+1}^{\alpha} \sum_{n \in I_m} f\left(\sum_{v=1}^{\infty} a_{n,v} \varphi(\{t_v\}) \right).$$

It is easily verified that

$$I_1 = \frac{1}{k_{r-1}} \sum_{m=1}^{m_0} \sum_{n \in I_m} f\left(\sum_{v=1}^{\infty} a_{n,v} \varphi(\{t_v\}) \right) =$$

$$= \frac{1}{k_{r-1}} \left(\sum_{n \in I_m} f\left(\sum_{v=1}^{\infty} a_{n,v} \varphi(\{t_v\}) \right) \right) + \ldots + \sum_{n \in I_{m_0}} f\left(\sum_{v=1}^{\infty} a_{n,v} \varphi(\{t_v\}) \right) \leq$$

$$\leq \frac{1}{k_{r-1}} \left(h_1 H_1 + \ldots + h_{m_0} H_{m_0} \right) \leq \frac{1}{k_{r-1}} m_0 k_{m_0} \sup_{1 \leq i \leq m_0} H_i \leq \frac{m_0 k_{m_0}}{k_{r-1}} L.$$

Moreover, we have

$$I_2 = \frac{1}{k_{r-1}} \sum_{m=m_0+1}^{\alpha} \sum_{n \in I_m} f\left(\sum_{v=1}^{\infty} a_{n,v} \varphi(\{t_v\}) \right) =$$

$$= \frac{1}{k_{r-1}} \sum_{m=m_0+1}^{\alpha} \left(\frac{1}{h_m} \sum_{n \in I_m} f\left(\sum_{v=1}^{\infty} a_{n,v} \varphi(\{t_v\}) \right) \right) h_m \leq$$

$$\leq \varepsilon \frac{1}{k_{r-1}} \sum_{m=m_0+1}^{\alpha} h_m \leq \varepsilon \frac{k_r}{k_{r-1}} = \varepsilon q_r < \varepsilon M.$$
5. PROPERTIES AND THEOREMS

Let the sequence Θ, the modulus function f be given and let ϕ and ψ are two ϕ-functions.

THEOREM 2. Let us suppose that the matrix A satisfies the condition

$$a_{n1} + a_{n2} + ... \leq K \text{ for } n=1,2,...$$

and let ϕ-functions ϕ and ψ satisfy the condition (Δ_2) for large u.

(a) If $\psi < \phi$ then $T_\Theta((A, \phi), f) \subseteq T_\Theta((A, \psi), f)$.

(b) If ϕ-function ϕ and ψ are equivalent for large u, then $T_\Theta((A, \phi), f) = T_\Theta((A, \psi), f)$.

PROOF. Let $x=(t_v) \in T_\Theta((A, \phi), f)$. By assumption we have

$$\psi(|t_v|) \leq b \phi(c |t_v|)$$

for b, c, $u_0 > 0$ and $|t_v| > u_0$. Let us denote $x=x^1 + x^2$, where $x^1=(t^1_v)$ and $t^1_v = t_v$ for $|t_v| < u_0$ and $t^1_v = 0$ for remaining values of v. It is easily seen that $x^1 \in T_\Theta((A, \phi), f)$. Moreover, by the assumptions and the inequality (\cdot) we get

$$\frac{1}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_{nv} \psi(|t^2_v|) \right) \leq \frac{1}{h_r} \sum_{n \in I_r} f \left(b \sum_{v=1}^{\infty} a_{nv} \phi(c |t^2_v|) \right) \leq \frac{L}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_{nv} \phi(|t^2_v|) \right),$$

where the constant L is connected with properties of f and ϕ.

Finally, we obtain $x^2=(t^2_v) \in T_\Theta((A, \psi), f)$ and in consequence $x \in T_\Theta((A, \psi), f)$.

The identity $T_\Theta((A, \phi), f) = T_\Theta((A, \psi), f)$ is proved, analogously.

THEOREM 3. Let the ϕ-function $\phi(u)$ satisfies the condition (Δ_2) and let the matrix A has the property $a_{n1} + a_{n2} + ... \leq K$ for $n=1,2,...$. The following conditions are true:

(a) If $x=(t_v) \in T_\Theta((A, \phi), f)$ and α is an arbitrary number, then $\alpha x \in T_\Theta((A, \phi), f)$.
(b) If \(x, y = (t_v) \in T_\theta ((A, \varphi), f) \) where \(x = (t_v), \ y = (s_v) \) and \(\alpha, \beta \) are given numbers, then \(\alpha x + \beta y \in T_\theta ((A, \varphi), f) \).

(c) \(T_\theta ((A, \varphi), f) \) is a linear space.

Proof. Let \(x \in T_\theta ((A, \varphi), f) \). First let us remark that for \(0 < \alpha < 1 \) we get

\[
\frac{1}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_n \varphi(\alpha |t_v|) \right) \leq \frac{1}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_n \varphi(|t_v|) \right).
\]

Moreover, if \(\alpha > 1 \) then we may find a positive number \(s \) such that \(\alpha < 2^s \) and we obtain

\[
\frac{1}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_n \varphi(\alpha |t_v|) \right) \leq \frac{1}{h_r} \sum_{n \in I_r} f \left(d^s \sum_{v=1}^{\infty} a_n \varphi(|t_v|) \right) \leq \frac{L}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_n \varphi(|t_v|) \right),
\]

where \(d \) and \(L \) are constants connected with the properties of \(\varphi \) and \(f \). Hence we obtain the condition (a).

In the following let the numbers \(\alpha, \beta \) and the elements \(x, y \in T_\theta ((A, \varphi), f) \) be given. From the part (a) it follows that the following inequality is true

\[
\frac{1}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_n \varphi(|\alpha t_v + \beta s_v|) \right) \leq L_1 \frac{1}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_n \varphi(|t_v|) \right) + L_2 \frac{1}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_n \varphi(|s_v|) \right),
\]

where the constants \(L_1 \) and \(L_2 \) are defined as in (a). In consequence \(x + y \in T_\theta ((A, \varphi), f) \).

Remark. Let us remark that the modulus function \(f \) is continuous in the interval \([0, \infty)\). Moreover, it is easily verified that by the assumptions of matrix \(A \), the sums of elements in \(n \)-th row of the matrix \(A \)

\[
S^n_{pq} = a_{n,p} + a_{n,p+1} + \ldots + a_{n,p+q-1} \quad \text{and} \quad \sum_{n \in I_r} f(S^n_{pq})
\]

are bounded and tend to zero as \(n \to \infty \), (compare [13], [19]).
In consequence we have $e, e^q, e^q_p \in T_\Theta((A, \varphi), f)$.

Theorem 5. $T_\Theta((A, \varphi)) \subseteq T_\Theta((A, \varphi), f)$.

Proof. Let $x \in T_\Theta((A, \varphi))$. For a given $\varepsilon > 0$ we choose $0 < \delta < 1$ such that $f(\nu) < \varepsilon$ for every $\nu \in [0, \delta]$. We can write

$$\frac{1}{h_r} \sum_{\nu \in I_r} f\left(\sum_{\nu = 1}^{\infty} a_{n\nu} \varphi(|t_\nu|)\right) = S_1 + S_2,$$

where $S_1 = \frac{1}{h_r} \sum_{\nu \in I_r} f\left(\sum_{\nu = 1}^{\infty} a_{n\nu} \varphi(|t_\nu|)\right)$ and this sum is taken over $\sum_{\nu = 1}^{\infty} a_{n\nu} \varphi(|t_\nu|) \leq \delta$ and $S_2 = \frac{1}{h_r} \sum_{\nu \in I_r} f\left(\sum_{\nu = 1}^{\infty} a_{n\nu} \varphi(|t_\nu|)\right)$ and this sum is taken over $\sum_{\nu = 1}^{\infty} a_{n\nu} \varphi(|t_\nu|) > \delta$.

By definition of the modulus f we have $S_1 = \frac{1}{h_r} \sum_{\nu \in I_r} f(\delta) = f(\delta) < \varepsilon$ and moreover $S_2 = f(1)\frac{1}{\delta} \frac{1}{h_r} \sum_{\nu \in I_r} \sum_{\nu = 1}^{\infty} a_{n\nu} \varphi(|t_\nu|)$. Finally, we get $x \in T_\Theta((A, \varphi), f)$.

6. **Some Remarks on Lacunary (A, φ)–Statistical Convergence**

Let Θ be a lacunary sequence, and let the matrix $A = (a_{n\nu})$, the sequence $x = (t_\nu)$, the φ-function $\varphi(u)$ and a positive number ε be given. We adopt the following notation

$$K_\Theta^r((A, \varphi), \varepsilon) = \left\{ n \in I_r : \sum_{\nu = 1}^{\infty} a_{n\nu} \varphi(|t_\nu|) \geq \varepsilon \right\}.$$

The sequence x is said to be lacunary (A, φ)–statistically convergent to a number zero if for every $\varepsilon > 0$

$$\lim_{r \to \infty} \frac{1}{k_r} \mu(K_\Theta^r((A, \varphi), \varepsilon)) = 0,$$
where $\mu(K^r_\Theta((A, \varphi), \varepsilon))$ denotes the number of elements belonging to $K^r_\Theta((A, \varphi), \varepsilon)$. The set of all lacunary (A, φ)–statistical convergent sequences is denoted by $S_\Theta((A, \varphi))$,

\[
S_\Theta((A, \varphi)) = \left\{ x = (t_v) : \lim_{r \to \infty} \frac{1}{h_r} \mu(K^r_\Theta((A, \varphi), \varepsilon)) = 0 \right\},
\]

(compare [2], [4], [5], [6], and [17]).

THEOREM 6. If $\psi < \varphi$ then $S_\Theta((A, \psi)) \subset S_\Theta((A, \varphi))$.

PROOF. By assumptions we have $\psi(|t_v|) \leq b \varphi(c|t_v|)$ and we have

\[
\sum_{v=1}^{\infty} a_{nv} \psi(|t_v|) \leq b \sum_{v=1}^{\infty} a_{nv} \varphi(c|t_v|) \leq L \sum_{v=1}^{\infty} a_{nv} \varphi(|t_v|),
\]

for $b, c > 0$, where the constant L is connected with properties of φ. Thus, the condition $\sum_{v=1}^{\infty} a_{nv} \varphi(|t_v|) \geq \varepsilon$ implies the condition $\sum_{v=1}^{\infty} a_{nv} \varphi(|t_v|) \geq \varepsilon$ and in consequence we obtain

\[
\mu(K^r_\Theta((A, \varphi), \varepsilon)) \leq \mu(K^r_\Theta((A, \psi), \varepsilon))
\]

and

\[
\lim_{r \to \infty} \frac{1}{h_r} \mu\left(K^r_\Theta((A, \varphi), \varepsilon)\right) \leq \lim_{r \to \infty} \frac{1}{h_r} \mu\left(K^r_\Theta((A, \psi), \varepsilon)\right).
\]

THEOREM 7. If $\psi \sim \varphi$ then $S_\Theta((A, \varphi)) = S_\Theta((A, \psi))$.

THEOREM 8.

(a) If the matrix A, the sequence Θ and functions f and φ be given, then

\[
T_\Theta((A, \varphi), f) \subset S_\Theta((A, \varphi)).
\]

(b) If the φ–function $\varphi(u)$ and the matrix A are given, and if the modulus function f is bounded, then

\[
S_\Theta((A, \varphi)) \subset T_\Theta((A, \varphi), f).
\]

(c) If the φ–function $\varphi(u)$ and the matrix A are given, and if the modulus function f is bounded, then

\[
S_\Theta((A, \varphi)) = T_\Theta((A, \varphi), f).
\]
PROOF. (a) Let f be a modulus function and let ε be a positive number. We have the following inequalities

$$
\frac{1}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_{n,v} \varphi(|t_v|) \right) \geq \frac{1}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_{n,v} \varphi(|t_v|) \right) \geq \frac{1}{h_r} f(\varepsilon) \sum_{n \in I_r} 1 \geq
$$

$$
\geq \frac{1}{h_r} f(\varepsilon) \mu(K^r_{\Theta}((A, \varphi), \varepsilon)),
$$

where $I_r = \left\{ n \in I_r : \sum_{v=1}^{\infty} a_{n,v} \varphi(|t_v|) \geq \varepsilon \right\}$. Finally, if $x \in T_0((A, \varphi), f)$ then $x \in S_\Theta((A, \varphi))$.

PROOF. (b) Let us suppose that $x \in S_\Theta((A, \varphi))$. If the modulus function f is a bounded function, then there exists an integer L such that $f(v) \leq L$ for all $v \geq 0$. In the following let

$$
I_r^2 = \left\{ n \in I_r : \sum_{v=1}^{\infty} a_{n,v} \varphi(|t_v|) < \varepsilon \right\}.
$$

Thus, we have

$$
\frac{1}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_{n,v} \varphi(|t_v|) \right) \leq \frac{1}{h_r} \sum_{n \in I_r} f \left(\sum_{v=1}^{\infty} a_{n,v} \varphi(|t_v|) \right) +
$$

$$
+ \frac{1}{h_r} \sum_{n \in I_r^2} f \left(\sum_{v=1}^{\infty} a_{n,v} \varphi(|t_v|) \right) \leq \frac{1}{h_r} L \mu(K^r_{\Theta}((A, \varphi), \varepsilon)) + f(\varepsilon).
$$

Taking the limit as $\varepsilon \to 0$, we obtain that $x \in T_0((A, \varphi), f)$.

PROOF of the part (c) follows from (a) and (b).

THEOREM 9. Let us suppose that the matrix A is regular and that the modulus function f is bounded. Then the condition $x \in T_0$ implies $x \in S_\Theta((A, \varphi))$.

PROOF. If $t_v \to 0$ as $v \to \infty$ then be regularity of A and by the definition of statistical (A, φ) - convergence we have
\[
\lim_{n \to \infty} \sum_{v=1}^{\infty} a_n \psi(|t_n|) = 0.
\]

Thus
\[
\lim_{r \to \infty} \frac{1}{h_r} \mu(K_{(A, \varphi), \varepsilon}) = 0.
\]

Finally, we obtain \(x \in T_{\Theta}((A, \varphi), f) \subset S_{\Theta}((A, \varphi)) \).

REFERENCES

(Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland)

Received on 12.02.2001 and, in revised form, on 30.05.2001.